Đề bài
Quan sát đồ thị hàm số \(y = f\left( x \right)\) ở Hình 5
a) Trong các điểm có tọa độ (1;2), (0;0). (2;3) điểm nào thuộc đồ thị hàm số, điểm nào không thuộc đồ thị hàm số?
b) Xác định \(f\left( 0 \right),f\left( 3 \right)\)
c) Tìm điểm thuộc đồ thị hàm số có tung độ bằng 1
Phương pháp giải - Xem chi tiết
Với\(f\left( x \right) = a{x^2} + bx + c \Rightarrow x = {x_0};f\left( {{x_0}} \right) = a{x_0}^2 + b{x_0} + c\)
Lời giải chi tiết
a)
Quan sát đồ thị, ta thấy điểm có tọa độ (0;0) không thuộc đồ thị hàm số. Các điểm có tọa độ (1;2), (2;3) thuộc đồ thị hàm số.
b) + Tại \(x = 0,f\left( 0 \right) = 1\)
+ Tại \(x = 3,f\left( 3 \right) = 4\)
c) Ta thấy: các điểm thuộc đồ thị, nằm bên trái trục tung đều có tung độ bằng 1.
Do đó các điểm thuộc đồ thị tung độ bằng 1 là \(A = \{ (a;0)|a \in \mathbb{R},a \le 0\} \)
Dưới bóng hoàng lan
Truyện kể về các vị thần sáng tạo thế giới
Chương 1. Mệnh đề và tập hợp
Đề kiếm tra 15 phút
Chủ đề 2. Thị trường và cơ chế thị trường
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10