Đề bài
Cho tam giác MEF cân tại M, có \(\widehat M = {80^o}\)
a) Tính \(\widehat E{,^{}}\widehat F\)
b) Gọi N, P lần lượt là trung điểm của ME, MF. Chứng minh rằng tam giác MNP cân.
c) Chứng minh rằng NP // EF
Phương pháp giải - Xem chi tiết
- Dùng tính chất tam giác cân để tìm số đo các góc
- Chứng minh MN = MP suy ra tam giác MNP cân tại M
- Chứng minh hai góc \(\widehat {MNP} = \widehat {{\rm{NEF}}}\) suy ra NP // EF
Lời giải chi tiết
a) Vì tam giác MEF cân tại M nên \(\widehat E = \widehat F = \frac{{{{180}^o} - {{80}^o}}}{2} = {50^o}\)
b) Ta có tam giác MEF cân tại M do đó ME = MF.
Suy ra: \(MN = \frac{{ME}}{2} = \frac{{MF}}{2} = MP\)
Vậy tam giác MNP cân tại M.
c) Trong tam giác cân MNP ta có: \(\widehat N = \widehat P = \frac{{{{180}^o} - {{80}^o}}}{2} = {50^o}\)
nên \(\widehat {MNP} = \widehat {{\rm{NEF}}} = {50^o}\)
Suy ra NP // EF (vì hai góc đồng vị bằng nhau)
Bài 3
Chủ đề 3. Tốc độ
Chủ đề 8. Cảm ứng ở sinh vật và tập tính ở động vật
Chủ đề 7. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Đề thi giữa kì 2
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7