1. Nội dung câu hỏi
Xét tính liên tục của các hàm số sau:
a) \(f\left( x \right) = {x^3} - {x^2} + 2\);
b) \(f\left( x \right) = \frac{{x + 1}}{{{x^2} - 4x}}\);
c) \(f\left( x \right) = \frac{{2x - 1}}{{{x^2} - x + 1}}\)
d) \(f\left( x \right) = \sqrt {{x^2} - 2x} \).
2. Phương pháp giải
Sử dụng kiến thức về tính liên tục của hàm số sơ cấp để xét tính liên tục của hàm số:
a) Hàm số đa thức \(y = P\left( x \right)\) có liên tục trên \(\mathbb{R}\).
b, c) Hàm số phân thức \(y = \frac{{P\left( x \right)}}{{Q\left( x \right)}}\) liên tục trên các khoảng của tập xác định của chúng (với P(x) và Q(x) là các đa thức).
d) Hàm số căn thức \(y = \sqrt {P\left( x \right)} \) liên tục trên các khoảng của tập xác định của chúng (với P(x) là đa thức).
3. Lời giải chi tiết
a) Hàm số \(f\left( x \right) \) \( = {x^3} - {x^2} + 2\) là hàm đa thức nên hàm số \(f\left( x \right) \) \( = {x^3} - {x^2} + 2\) liên tục trên \(\mathbb{R}\).
b) Hàm số \(f\left( x \right) \) \( = \frac{{x + 1}}{{{x^2} - 4x}}\) xác định khi \({x^2} - 4x \ne 0 \Leftrightarrow x\left( {x - 4} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 4\end{array} \right.\)
Tập xác định của hàm số \(f\left( x \right) \) \( = \frac{{x + 1}}{{{x^2} - 4x}}\) là \(D \) \( = \left( { - \infty ;0} \right) \cup \left( {0;4} \right) \cup \left( {4; + \infty } \right)\).
Do đó, hàm số \(f\left( x \right) \) \( = \frac{{x + 1}}{{{x^2} - 4x}}\) liên tục trên các khoảng \(\left( { - \infty ;0} \right)\), \(\left( {0;4} \right)\)và \(\left( {4; + \infty } \right)\).
c) Vì \({x^2} - x + 1 \) \( = {x^2} - 2.x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + \frac{3}{4} \) \( = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\forall x \in \mathbb{R}\)
Do đó, hàm số \(f\left( x \right) \) \( = \frac{{2x - 1}}{{{x^2} - x + 1}}\) liên tục trên \(\mathbb{R}\).
d) Hàm số \(f\left( x \right) \) \( = \sqrt {{x^2} - 2x} \) xác định khi \({x^2} - 2x \ge 0 \Leftrightarrow x\left( {x - 2} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x - 2 \ge 0\\x \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le 0\end{array} \right.\)
Tập xác định của hàm số \(f\left( x \right) \) \( = \sqrt {{x^2} - 2x} \) là \(D \) \( = \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\).
Do đó, hàm số \(f\left( x \right) \) \( = \sqrt {{x^2} - 2x} \) liên tục trên các khoảng \(\left( { - \infty ;0} \right]\) và \(\left[ {2; + \infty } \right)\).
Unit 2: Generation Gap
Hello!
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 11
CHƯƠNG IV- TỪ TRƯỜNG
Chuyên đề 3. Một số yếu tố kĩ thuật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11