1. Nội dung câu hỏi
Cho hai mặt phẳng \(\left( P \right),{\rm{ }}\left( Q \right)\) cắt nhau theo giao tuyến \(d\) và hai đường thẳng \(a,{\rm{ }}b\) lần lượt nằm trong \(\left( P \right),{\rm{ }}\left( Q \right)\). Chứng minh rằng nếu hai đường thẳng \(a,{\rm{ }}b\) cắt nhau thì giao điểm của chúng thuộc đường thẳng \(d\).
2. Phương pháp giải
Gọi \(I\) là giao điểm của hai đường thẳng \(a\) và \(b\). Chỉ ra rằng \(I\) thuộc cả hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\), từ đó suy ra \(I \in d\).
3. Lời giải chi tiết
Gọi \(I\) là giao điểm của hai đường thẳng \(a\) và \(b\). Suy ra \(\left\{ \begin{array}{l}I \in a\\I \in b\end{array} \right.\)
Vì \(a \subset \left( P \right)\) và \(b \subset \left( Q \right)\), ta suy ra \(\left\{ \begin{array}{l}I \in \left( P \right)\\I \in \left( Q \right)\end{array} \right.\), tức là \(I\) thuộc giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Mà \(\left( P \right) \cap \left( Q \right) = d\), suy ra \(I \in d\).
Bài toán được chứng minh.
Chương 4. Kiểu dữ liệu có cấu trúc
Bài 10: Công thức phân tử hợp chất hữu cơ
Skills (Units 7 - 8)
Unit 1: Eat, drink and be healthy
Grammar Expansion
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11