1. Nội dung câu hỏi
Cho hàm số \(f\left( x \right) = \frac{{{{\sin }^2}x}}{{{x^2}}}\). Chứng minh rằng \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\)
2. Phương pháp giải
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số f(x) có giới hạn là số L khi \(x \to + \infty \) nếu dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và khi \({x_n} \to + \infty \), ta có \(f\left( {{x_n}} \right) \to L.\) Kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\) hay \(f\left( x \right) \to L\) khi \(x \to + \infty \)
3. Lời giải chi tiết
Lấy dãy số \(\left( {{x_n}} \right)\) bất kì sao cho \({x_n} \to + \infty .\) Khi đó: \(\left| {f\left( {{x_n}} \right)} \right| = \frac{{{{\sin }^2}{x_n}}}{{x_n^2}} \le \frac{1}{{x_n^2}} \to 0\) khi \(n \to + \infty .\) Vậy \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = 0\). Do đó, \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\).
Chương V. Công nghệ chăn nuôi
Chủ đề 2: Giao cầu
Unit 9: Good citizens
Chủ đề 2: Kĩ thuật chuyền bóng - nhảy dừng bắt bóng, xoay chân trụ - nhảy ném rổ
Bài 8: Hợp chất hữu cơ và hóa học hữu cơ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11