Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Cho đường tròn tâm \(O\) bán kính \(R.\) Lấy \(3\) điểm \(A, B, C\) trên đường tròn đó sao cho \(AB = BC = CA.\) Gọi \(I\) là điểm bất kỳ của cung nhỏ \(BC\) \((\)và \(I\) không trùng với \(B, C).\) Gọi \(M\) là giao điểm của \(CI\) và \(AB.\) Gọi \(N\) là giao điểm của \(BI\) và \(AC.\) Chứng minh:
\(a)\) \(\widehat {ANB} = \widehat {BCI}\)
\(b)\) \(\widehat {AMC} = \widehat {CBI}\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Với hai cung nhỏ trong một đường tròn, hai dây bằng nhau căng hai cung bằng nhau.
+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của cung bị chắn.
+) Nếu \(C\) là một điểm trên cung \(AB\) thì \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)
+) Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
Lời giải chi tiết
Vì \(AB = AC = BC\;\; (gt)\)
Suy ra các cung nhỏ \(\overparen{AB} = \overparen{AC} = \overparen{BC}\) \((1)\)
\(a)\) Xét đường tròn \((O)\) có: \(\widehat {BCI} = \displaystyle {1 \over 2} sđ \overparen{BI}\) (tính chất góc nội tiếp)
hay \(\widehat {BCI} = \displaystyle{1 \over 2} (sđ \overparen{BC}- sđ \overparen{CI}\)) \( (2)\)
Từ \((1)\) và \((2)\) suy ra: \(\widehat {BCI} =\displaystyle {1 \over 2} (sđ \overparen{AB}- sđ \overparen{CI})\) \( (3)\)
Lại có: \(\widehat {ANB} = \displaystyle {1 \over 2} (sđ \overparen{AB}- sđ \overparen{CI})\) (góc có ở đỉnh bên ngoài đường tròn) \( (4)\)
Từ \((3)\) và \((4)\) suy ra: \(\widehat {ANB} = \widehat {BCI}\)
\(b)\) Xét đường tròn \((O)\) có: \(\widehat {CBI} =\displaystyle {1 \over 2} sđ \overparen{CI}\) (tính chất góc nội tiếp)
Hay \(\widehat {CBI} = \displaystyle{1 \over 2} (sđ \overparen{BC}- sđ \overparen{BI}\)) \( (5)\)
Từ \((1)\) và \((5)\) suy ra: \(\widehat {CBI} = \displaystyle{1 \over 2} (sđ \overparen{AC}- sđ \overparen{BI}\)) \((6)\)
Lại có: \(\widehat {AMC} = \displaystyle{1 \over 2} (sđ \overparen{AC}- sđ \overparen{BI}\)) (góc có đỉnh bên ngoài đường tròn) \((7)\)
Từ \((6)\) và \((7)\) suy ra: \(\widehat {AMC} = \widehat {CBI}\).
CHƯƠNG 2. KIM LOẠI
Bài 7: Kế thừa và phát huy truyền thống tốt đẹp của dân tộc
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Lịch sử lớp 9
Unit 9: Natural Disasters - Thiên tai
Bài 6: Hợp tác cùng phát triển