1. Nội dung câu hỏi
Phương trình \(\tan x = - 1\) có các nghiệm là:
A. \(x = \frac{\pi }{4} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
B. \(x = - \frac{\pi }{4} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
C. \(x = \frac{\pi }{2} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
D. \(x = - \frac{\pi }{4} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
2. Phương pháp giải
Sử dụng kết quả \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
3. Lời giải chi tiết
Vì \(\tan \left( { - \frac{\pi }{4}} \right) = - 1\), phương trình trở thành:
\(\tan x = \tan \left( { - \frac{\pi }{4}} \right) \Leftrightarrow x = - \frac{\pi }{4} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
Đáp án đúng là B.
Tải 10 đề kiểm tra 15 phút - Chương I - Hóa học 11
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VI - Hóa học 11
Tải 10 đề kiểm tra 15 phút - Chương IV - Hóa học 11
Chương I. Giới thiệu chung về chăn nuôi
Một số tác giả, tác phẩm văn học tham khảo - Ngữ văn 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11