1. Nội dung câu hỏi
Cho hàm số g(x) liên tục trên \(\mathbb{R}\) trừ điểm \(x = 0\). Xét tính liên tục của hàm số \(f\left( x \right) = \frac{{g\left( x \right)}}{x}\) tại \(x = 1\).
2. Phương pháp giải
Cho hai hàm số f(x) và g(x) liên tục tại điểm \({x_0}\). Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại điểm \({x_0}\) nếu \(g\left( {{x_0}} \right) \ne 0\).
3. Lời giải chi tiết
Do hàm số g(x) liên tục tại \(x = 1\) nên hàm số \(f\left( x \right) = \frac{{g\left( x \right)}}{x}\) cũng liên tục tại \(x = 1\).
Chương 2: Nitrogen và sulfur
Đề minh họa số 1
CHƯƠNG IV. SINH SẢN - SINH HỌC 11 NÂNG CAO
Chuyên đề 2: Chiến tranh và hòa bình trong thế kỉ XX
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Ngữ văn lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11