1. Nội dung câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3\;\;\;\;\;\;\;\;\;khi\;x \le 1\\ax + b\;\;khi\;1 < x < 2\\5\;\;\;\;\;\;\;\;\;khi\;x \ge 2\end{array} \right.\). Xác định a, b để hàm số liên tục trên \(\mathbb{R}\).
2. Phương pháp giải
Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên \(\left[ {a;b} \right]\) nếu nó liên tục trên khoảng \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\;\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)
3. Lời giải chi tiết
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {ax + b} \right) = a + b\), \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {ax + b} \right) = 2a + b\)
Để hàm số f(x) liên tục trên \(\mathbb{R}\) thì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\end{array} \right.\).
Do đó, \(\left\{ \begin{array}{l}a + b = 3\\2a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\end{array} \right.\)
Chủ đề 2: Nitrogen và sulfur
Unit 1: Eat, drink and be healthy
Unit 5: Challenges
Unit 4: Preserving World Heritage
Unit 4: Global warming
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11