Đề bài
Cho \(f\left( x \right) = {2 \over x},g\left( x \right) = {{{x^2}} \over 2} - {{{x^3}} \over 3}.\)
Giải bất phương trình \(f\left( x \right) \le g'\left( x \right).\)
Lời giải chi tiết
\(\begin{array}{l}g'\left( x \right) = \dfrac{{2x}}{2} - \dfrac{{3{x^2}}}{3} = x - {x^2}\\f\left( x \right) \le g'\left( x \right) \Leftrightarrow \dfrac{2}{x} \le x - {x^2}\\ \Leftrightarrow {x^2} - x + \dfrac{2}{x} \le 0\\ \Leftrightarrow \dfrac{{{x^3} - {x^2} + 2}}{x} \le 0\\ \Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {{x^2} - 2x + 2} \right)}}{x} \le 0\\ \Leftrightarrow \dfrac{{x + 1}}{x} \le 0\\ \Leftrightarrow - 1 \le x < 0\end{array}\)
Do \({x^2} - 2x + 2 = {\left( {x - 1} \right)^2} + 1 > 0,\) \(\forall x \in \mathbb{R}\).
Vậy \(x \in \left[ { - 1;0} \right)\).
HÌNH HỌC-SBT TOÁN 11 NÂNG CAO
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chương 4. Kiểu dữ liệu có cấu trúc
Chương II. Vật liệu cơ khí
CHƯƠNG II - DÒNG ĐIỆN KHÔNG ĐỔI
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11