Đề bài
Tính \(\varphi '\left( 2 \right),\) biết rằng \(\varphi \left( x \right) = {{\left( {x - 2} \right)\left( {8 - x} \right)} \over {{x^2}}}.\)
Phương pháp giải - Xem chi tiết
Tính \(\varphi '\left( x \right)\) rồi thay x=2 vào.
Lời giải chi tiết
\(\begin{array}{l}
\varphi \left( x \right) = \dfrac{{\left( {x - 2} \right)\left( {8 - x} \right)}}{{{x^2}}}\\
= \dfrac{{ - {x^2} + 10x - 16}}{{{x^2}}}\\
= - 1 + \dfrac{{10}}{x} - \dfrac{{16}}{{{x^2}}}\\
\Rightarrow \varphi '\left( x \right) = - \dfrac{{10}}{{{x^2}}} - \dfrac{{ - 16.\left( {{x^2}} \right)'}}{{{x^4}}}\\
= - \dfrac{{10}}{{{x^2}}} + \dfrac{{16.2x}}{{{x^4}}} = - \dfrac{{10}}{{{x^2}}} + \dfrac{{32}}{{{x^3}}}\\
\Rightarrow \varphi '\left( 2 \right) = - \dfrac{{10}}{{{2^2}}} + \dfrac{{32}}{{{2^3}}} = \dfrac{3}{2}
\end{array}\)
Chuyên đề 3. Mở đầu điện tử học
Chủ đề 4: Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước Cách mạng tháng Tám năm 1945)
Chương 4: Hydrocarbon
Chương V. Giới thiệu chung về cơ khí động lực
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11