1. Nội dung câu hỏi
Cho \({u_n} = \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\) với a, b là các số thực thỏa mãn \(\left| a \right| < 1,\left| b \right| < 1\). Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\)
2. Phương pháp giải
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.
3. Lời giải chi tiết
Ta có: \({u_n} = \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}} = \frac{{\frac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\frac{{1 - {b^{n + 1}}}}{{1 - b}}}} = \frac{{1 - b}}{{1 - a}}.\frac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}}\)
Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \frac{{1 - b}}{{1 - a}}\).
Chủ đề 7: Quyền bình đẳng của công dân
Chuyên đề 2. Một số vấn đề về du lịch thế giới
Unit 4: Global Warming
Chủ đề 4: Kĩ thuật treo cầu thuận tay và phối hợp kĩ thuật, chiến thuật cơ bản
CHƯƠNG VI. KHÚC XẠ ÁNH SÁNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11