SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1

Trả lời câu hỏi 5.37 - Mục câu hỏi trắc nghiệm trang 88

1. Nội dung câu hỏi

Cho hàm số \(f(x) = \left\{ \begin{array}{l}2\,\,\,{\rm{khi}}\,\,\, - 1 < x \le 1\\1 - x\,\,{\rm{khi}}\,\,x \le  - 1\,\,{\rm{hay}}\,\,x > 1\end{array} \right.\). Mệnh đề đúng là

A. Hàm số \(f(x)\) liên tục trên \([ - 1;\,1]\)

B. Hàm số \(f(x)\) liên tục trên \(( - 1;\,1]\)

C. Hàm số \(f(x)\) liên tục trên \([ - 1;\,1)\)

D. Hàm số \(f(x)\) liên tục trên \(\mathbb{R}\).


2. Phương pháp giải

Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên \(\left[ {a;b} \right]\) nếu nó liên tục trên khoảng \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\;\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

 

3. Lời giải chi tiết 

Đáp án C.

Vì hàm số trên là hàm đa thức nên nó liên tục trên các khoảng \(( - \infty ; - 1)\), \(( - 1;1)\) và \((1; + \infty )\).

Xét tại điểm \(x = 1\), \(f(1) = 2,\,\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} (1 - x) = 1 - 1 = 0 \ne f(1)\). Vậy hàm số \(f(x)\)không liên tục tại điểm \(x = 1\).

Xét tại điểm \(x =  - 1\), \(f( - 1) = 1 - ( - 1) = 2,\,\mathop {\lim }\limits_{x \to  - {1^ - }} f(x) = \mathop {\lim }\limits_{x \to  - {1^ - }} (1 - x) = 1 - ( - 1) = 2 = f( - 1)\).

Vậy hàm số \(f(x)\) liên tục tại điểm \(x =  - 1\).

Vậy hàm số \(f(x)\) liên tục trên \([ - 1;\,1)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved