Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề bài
Quãng đường Thanh Hóa – Hà Nội dài \(150km\). Một ô tô từ Hà Nội vào Thanh Hóa, nghỉ tại Thanh Hóa \(3\) giờ \(15\) phút, rồi trở về Hà Nội, hết tất cả \(10 \) giờ. Tính vận tốc của ô tô lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là \(10km/h\).
Phương pháp giải - Xem chi tiết
* Các bước giải bài toán bằng cách lập phương trình
Bước 1: Gọi ẩn và đặt điều kiện cho ẩn.
Bước 2: Biểu diễn các đại lượng chưa biết qua ẩn và đại lượng đã biết.
Bước 3: Lập phương trình và giải phương trình.
Bước 4: Kiểm tra điều kiện và kết luận.
Lời giải chi tiết
Gọi vận tốc lúc về là \(\displaystyle x (km/h)\); điều kiện: \(\displaystyle x > 0\)
Thì vận tốc lúc đi là: \(\displaystyle (x + 10) (km/h)\)
Thời gian lúc đi là: \(\displaystyle {{150} \over {x + 10}}\) (giờ)
Thời gian lúc về là: \(\displaystyle {{150} \over x}\) (giờ)
Đổi 3 giờ 15 phút \(=\dfrac{13}{4}\) giờ.
Vì tổng thời gian hết tất cả \(10 \) giờ nên ta có phương trình:
\(\displaystyle \eqalign{
& {{150} \over {x + 10}} + {13 \over 4} + {{150} \over x} = 10 \cr
& \Leftrightarrow {{150} \over {x + 10}} + {{150} \over x} = 10 - {{13} \over 4} \cr
& \Leftrightarrow {{150} \over {x + 10}} + {{150} \over x} = {{27} \over 4} \cr
& \Rightarrow 600x + 600\left( {x + 10} \right) = 27x\left( {x + 10} \right) \cr
& \Leftrightarrow 600x + 600x + 6000 = 27{x^2} + 270x \cr
& \Leftrightarrow 27{x^2} - 930x - 6000 = 0 \cr
& \Leftrightarrow 9{x^2} - 310x - 2000 = 0 \cr
& \Delta ' = (-155)^2-9.(-2000)= 42025 > 0 \cr
& \sqrt {\Delta '} = \sqrt {42025} = 205 \cr
& {x_1} = {{155 + 205} \over 9} = 40 \cr
& {x_2} = {{155 - 205} \over 9} = - {{50} \over 9} \cr} \)
\(\displaystyle {x_2} = - {{50} \over 9} < 0\) không thỏa mãn điều kiện: loại
Vận tốc ô tô lúc về là \(\displaystyle 40 km/h\).
Bài 28
Đề thi vào 10 môn Toán Quảng Ngãi
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Địa lí lớp 9
Tải 20 đề kiểm tra 1 tiết học kì 2 Văn 9
Bài 10: Lý tưởng sống của thanh niên