1. Nội dung câu hỏi
Cho hình chóp \(S.ABCD\). Gọi \(M\) là trung điểm của cạnh \(SD\).
a) Xác định giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).
b) Xác định giao điểm của đường thẳng \(BM\) với mặt phẳng \(\left( {SAC} \right)\).
c) Xác định giao tuyến của mặt phẳng \(\left( {MBC} \right)\) với các mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\).
2. Phương pháp giải
a) Để xác định giao tuyến của hai mặt phẳng, ta cần xác định hai điểm chung của hai mặt phẳng đó.
b) Để xác định giao điểm của \(BM\) và \(\left( {SAC} \right)\), ta cần chọn một đường thẳng nằm trong \(\left( {SAC} \right)\), và xác định giao điểm của nó với đường thẳng \(BM\).
c) Để xác định giao tuyến của hai mặt phẳng, ta cần xác định hai điểm chung của hai mặt phẳng đó.
3. Lời giải chi tiết
a) Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Do \(AC \subset \left( {SAC} \right)\), \(BD \subset \left( {SBD} \right)\) nên \(O\) là một điểm chung của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).
Mặt khác, ta có \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\). Do đó, giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).
b) Nhận xét rằng \(BM \subset \left( {SBD} \right)\). Trên \(\left( {SBD} \right)\), gọi \(E\) là giao điểm của \(BM\) và \(SO\).
Do \(SO \subset \left( {SAC} \right)\), nên \(\left\{ E \right\} = BM \cap \left( {SAC} \right)\).
Vậy \(E\) là giao điểm của \(BM\) và \(\left( {SAC} \right)\).
c) Nhận xét rằng \(CE \subset \left( {SAC} \right)\). Trên \(\left( {SAC} \right)\), gọi \(F\) là giao điểm của \(CE\) và \(SA\).
Do \(E \in BM\), mà \(BM \subset \left( {MBC} \right)\) nên \(E \in \left( {MBC} \right)\). Suy ra \(CE \subset \left( {MBC} \right)\).
Xét hai mặt phẳng \(\left( {MBC} \right)\) và \(\left( {SAB} \right)\).
Ta có \(\left\{ \begin{array}{l}F \in CE \subset \left( {MBC} \right)\\F \in SA \subset \left( {SAB} \right)\end{array} \right. \Rightarrow F \in \left( {MBC} \right) \cap \left( {SAB} \right)\).
Mặt khác, vì \(B \in \left( {MBC} \right) \cap \left( {SAB} \right)\), nên giao tuyến của \(\left( {MBC} \right)\) và \(\left( {SAB} \right)\) là đường thẳng \(BF\).
Xét hai mặt phẳng \(\left( {MBC} \right)\) và \(\left( {SAD} \right)\).
Ta có \(\left\{ \begin{array}{l}F \in CE \subset \left( {MBC} \right)\\F \in SA \subset \left( {SAD} \right)\end{array} \right. \Rightarrow F \in \left( {MBC} \right) \cap \left( {SAD} \right)\).
Mặt khác, ta lại có \(\left\{ \begin{array}{l}M \in \left( {MBC} \right)\\M \in SD \subset \left( {SAD} \right)\end{array} \right. \Rightarrow M \in \left( {MBC} \right) \cap \left( {SAD} \right)\).
Như vậy, giao tuyến của \(\left( {MBC} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(MF\).
Unit 2: Personnal Experiences - Kinh nghiệm cá nhân
ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11
Review (Units 1 - 4)
Unit 9: The Post Office - Bưu điện
Unit 8: Conservation
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11