1. Nội dung câu hỏi
Giải phương trình:
a) \(\sin 3x = \frac{{\sqrt 3 }}{2}\)
b) \(\sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\)
c) \(\cos \left( {3x + \frac{\pi }{3}} \right) = - \frac{1}{2}\)
d) \(2\cos x + \sqrt 3 = 0\)
e) \(\sqrt 3 \tan x - 1 = 0\)
g) \(\cot \left( {x + \frac{\pi }{5}} \right) = 1\)
2. Phương pháp giải
Sử dụng các kết quả sau:
3. Lời giải chi tiết
a) Ta có \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\), phương trình trở thành:
\(\sin 3x = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{3} + k2\pi \\3x = \pi - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
b) Ta có \(\sin \left( { - \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\), phương trình trở thành:
\(\sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \sin \left( { - \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \\\frac{x}{2} + \frac{\pi }{4} = \pi + \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = - \frac{\pi }{2} + k2\pi \\\frac{x}{2} = \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \pi + k4\pi \\x = 2\pi + k4\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
c) Ta có \(\cos \frac{{2\pi }}{3} = \frac{{ - 1}}{2}\), phương trình trở thành:
\(\cos \left( {3x + \frac{\pi }{3}} \right) = \cos \frac{{2\pi }}{3} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{3} = \frac{{2\pi }}{3} + k2\pi \\3x + \frac{\pi }{3} = - \frac{{2\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{3} + k2\pi \\3x = - \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{\pi }{3} + k\frac{{2\pi }}{3}\end{array} \right.\)
\(\left( {k \in \mathbb{Z}} \right)\)
d) \(2\cos x + \sqrt 3 = 0 \Leftrightarrow \cos x = - \frac{{\sqrt 3 }}{2}\).
Ta có: \(\cos \frac{{5\pi }}{6} = - \frac{{\sqrt 3 }}{2}\), phương trình trở thành: \(\cos x = \cos \frac{{5\pi }}{6} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{6} + k2\pi \\x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
e) \(\sqrt 3 \tan x - 1 = 0 \Leftrightarrow \tan x = \frac{1}{{\sqrt 3 }}\)
Ta có \(\tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }}\), phương trình trở thành: \(\tan x = \tan \frac{\pi }{6} \Leftrightarrow x = \frac{\pi }{6} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
f) Ta có \(\cot \frac{\pi }{4} = 1\), phương trình trở thành:
\(\cot \left( {x + \frac{\pi }{5}} \right) = \cot \frac{\pi }{4} \Leftrightarrow x + \frac{\pi }{5} = \frac{\pi }{4} + k\pi \Leftrightarrow x = \frac{\pi }{{20}} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
Bài 2. Xu hướng toàn cầu hóa, khu vực hóa kinh tế - Tập bản đồ Địa lí 11
Bài 11: Tiết 3: Hiệp hội các nước Đông Nam Á (ASEAN) - Tập bản đồ Địa lí 11
Chủ đề 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giành giải phóng dân tộc trong lịch sử Việt Nam (trước Cách mạng tháng Tám năm 1945)
Unit 5: Illiteracy - Nạn mù chữ
Unit 4: Global Warming
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11