1. Nội dung câu hỏi
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 2,{u_{n + 1}} = {u_n} + \frac{2}{{{3^n}}},n \ge 1\). Đặt \({v_n} = {u_{n + 1}} - {u_n}.\)
a) Tính \({v_1} + {v_2} + ... + {v_n}\) theo n.
b) Tính \({u_n}\) theo n.
c) Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\)
2. Phương pháp giải
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho số lớn nhất, rồi áp dụng các quy tắc tính giới hạn.
3. Lời giải chi tiết
Ta có: \({v_n} = \frac{2}{{{3^n}}}.\) Do đó, \({v_1} + {v_2} + ... + {v_n} = 2\left( {\frac{{1 - \frac{1}{{{3^{n + 1}}}}}}{{1 - \frac{1}{3}}}} \right) = 3.\left( {1 - \frac{1}{{{3^{n + 1}}}}} \right)\)
Mặt khác:
\({v_1} + {v_2} + ... + {v_n} = \left( {{u_2} - {u_1}} \right) + \left( {{u_3} - {u_2}} \right) + ... + \left( {{u_{n + 1}} - {u_n}} \right) = {u_{n + 1}} - {u_1} = {u_{n + 1}} - 2\)
Vậy \({u_n} = 3\left( {1 - \frac{1}{{{3^n}}}} \right) + 2\)
c) \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \left[ {3\left( {1 - \frac{1}{{{3^n}}}} \right) + 2} \right] = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{5.3}^n} - 1}}{{{3^n}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{5 - \frac{1}{{{3^n}}}}}{1} = 5\).
Chương 6: Hợp chất carbonyl - Carboxylic acid
Bài 5. Tiết 3: Một số vấn đề của khu vực Tây Nam Á và khu vực Trung Á - Tập bản đồ Địa lí 11
Unit 7: Education options for school-leavers
Chương 7. Hiđrocacbon thơm. Nguồn hiđrocacbon thiên nhiên. Hệ thống hóa về hiđrocacbon
Chủ đề 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giành giải phóng dân tộc trong lịch sử Việt Nam (trước Cách mạng tháng Tám năm 1945)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11