Đề bài
Tìm đạo hàm cấp hai của hàm số sau: \(y = {x \over {{x^2} - 1}}.\)
Phương pháp giải - Xem chi tiết
Tính đạo hàm cấp 1 rồi tính tiếp đạo hàm cấp 2 của hàm số.
Lời giải chi tiết
\(\begin{array}{l}
y = \dfrac{x}{{{x^2} - 1}} = \dfrac{1}{2}.\dfrac{{x - 1 + x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\
= \dfrac{1}{2}\left( {\dfrac{{x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \dfrac{{x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}} \right)\\
= \dfrac{1}{2}\left( {\dfrac{1}{{x + 1}} + \dfrac{1}{{x - 1}}} \right)\\
y' = \dfrac{1}{2}\left( {\dfrac{{ - \left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{{ - \left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^2}}}} \right)\\
= \dfrac{1}{2}\left( {\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}} \right)\\
y'' = \dfrac{1}{2}\left[ { - \dfrac{{ - \left( {{{\left( {x + 1} \right)}^2}} \right)'}}{{{{\left( {x + 1} \right)}^4}}} - \dfrac{{ - \left( {{{\left( {x - 1} \right)}^2}} \right)'}}{{{{\left( {x - 1} \right)}^4}}}} \right]\\
= \dfrac{1}{2}\left( {\dfrac{{2\left( {x + 1} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^4}}} + \dfrac{{2\left( {x - 1} \right)\left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^4}}}} \right)\\
= \dfrac{1}{2}\left( {\dfrac{2}{{{{\left( {x + 1} \right)}^3}}} + \dfrac{2}{{{{\left( {x - 1} \right)}^3}}}} \right)\\
= \dfrac{1}{{{{\left( {x + 1} \right)}^3}}} + \dfrac{1}{{{{\left( {x - 1} \right)}^3}}}
\end{array}\)
Unit 7: Independent living
Hello!
Unit 9: Life Now and in the Past
Chương 7. Hiđrocacbon thơm. Nguồn hiđrocacbon thiên nhiên. Hệ thống hóa về hiđrocacbon
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TIẾP THEO)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11