PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 1

Bài 6 trang 114 Vở bài tập toán 9 tập 1

Đề bài

Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng:

a) Bốn điểm B, E, D, C thuộc cùng một đường tròn

b) DE < BC. 

Phương pháp giải - Xem chi tiết

a) Tìm một điểm cách đều bốn điểm \(B,E,D,C.\)

b) Dùng định lí : Trong các dây của đường tròn, đường kính là dây lớn nhất.

Lời giải chi tiết

a) Gọi \(M\) là trung điểm của \(BC.\) Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, ta có \(EM = \dfrac{1}{2}BC;{\rm{   DM = }}\dfrac{1}{2}BC,\)

suy ra \(EM = DM = BM = CM,\) hay bốn điểm \(B,E,D,C.\) cách đều điểm M

Do đó bốn điểm \(B,E,D,C.\) thuộc một đường tròn có đường kính là \(BC.\)

b) Trong đường tròn \((M)\) nói trên, \(DE\) là một dây không đi qua tâm, \(BC\) là đường kính nên \(DE < BC.\)(vì trong các dây của đường tròn, dây lớn nhất là đường kính).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved