1. Nội dung câu hỏi
So sánh các cặp số sau:
a) \(\log 4,9\) và \(\log 5,2\);
b) \({\log _{0,3}}0,7\) và \({\log _{0,3}}0,8\);
c) \({\log _\pi }3\) và \({\log _3}\pi \).
2. Phương pháp giải
a, b) Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để so sánh:
+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).
+ Nếu \(0 < a < 1\) thì hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).
c) So sánh với 1.
3. Lời giải chi tiết
a) Hàm số \(y = \log x\) có cơ số \(10 > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\).
Mà \(4,9 < 5,2\) nên \(\log 4,9 < \log 5,2\)
b) Hàm số \(y = {\log _{0,3}}x\) có cơ số \(0,3 < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\).
Mà \(0,7 < 0,8\) nên \({\log _{0,3}}0,7 > {\log _{0,3}}0,8\)
c) Ta có: \({\log _\pi }3 < 1,1 < {\log _3}\pi \) nên \({\log _\pi }3 < {\log _3}\pi \)
SBT Ngữ văn 11 - Chân trời sáng tạo tập 2
Unit 5: Cities and Education in the future
Tiếng Anh 11 mới tập 1
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 11
Chủ đề 3: Kĩ thuật đá cầu tấn công và chiến thuật tấn công cơ bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11