1. Nội dung câu hỏi
Cho tam giác ABC, chứng minh rằng:
a) \(\cos A\cos B - \sin A\sin B + \cos C = 0\);
b) \(\cos \frac{B}{2}\sin \frac{C}{2} + \sin \frac{B}{2}\cos \frac{C}{2} = \cos \frac{A}{2}\).
2. Phương pháp giải
Sử dụng kiến thức về công thức cộng để chứng minh:
a) \(\cos \left( {\alpha + \beta } \right) \) \( = \cos \alpha \cos \beta - \sin \alpha \sin \beta \)
b) \(\sin \left( {\alpha + \beta } \right) \) \( = \sin \alpha \cos \beta + \cos \alpha \sin \beta \)
3. Lời giải chi tiết
a) Tam giác ABC có: \(A + B + C \) \( = {180^0} \Rightarrow A + B \) \( = {180^0} - C\)
\(\cos A\cos B - \sin A\sin B + \cos C \) \( = \cos \left( {A + B} \right) + \cos C \) \( = \cos \left( {{{180}^0} - C} \right) + \cos C\)
\( \) \( = - \cos C + \cos C \) \( = 0\)
b) Tam giác ABC có: \(A + B + C \) \( = {180^0} \Rightarrow \frac{B}{2} + \frac{C}{2} \) \( = {90^0} - \frac{A}{2}\)
\(\cos \frac{B}{2}\sin \frac{C}{2} + \sin \frac{B}{2}\cos \frac{C}{2} \) \( = \sin \left( {\frac{B}{2} + \frac{C}{2}} \right) \) \( = \sin \left( {{{90}^0} - \frac{A}{2}} \right) \) \( = \cos \frac{A}{2}\).
CHƯƠNG 1. SỰ ĐIỆN LI
Unit 8: Becoming independent
Phần hai. Địa lí khu vực và quốc gia
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 11
Chương 1: Cân bằng hóa học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11