1. Nội dung câu hỏi
Tính đạo hàm của các hàm số sau biết f và g là các hàm số có đạo hàm trên \(\mathbb{R}\):
a) \(y = f\left( {{x^3}} \right)\);
b) \(y = \sqrt {{f^2}\left( x \right) + {g^2}\left( x \right)} \).
2. Phương pháp giải
Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).
3. Lời giải chi tiết
a) \(y' \) \( = {\left[ {f\left( {{x^3}} \right)} \right]'} \) \( = \left( {{x^3}} \right)'.f'\left( {{x^3}} \right) \) \( = 3{x^2}.f'\left( {{x^3}} \right)\);
b) \(y' \) \( = {\left( {\sqrt {{f^2}\left( x \right) + {g^2}\left( x \right)} } \right)'} \) \( = \frac{{{{\left( {{f^2}\left( x \right) + {g^2}\left( x \right)} \right)}'}}}{{2\sqrt {{f^2}\left( x \right) + {g^2}\left( x \right)} }} \) \( = \frac{{2f\left( x \right)f'\left( x \right) + 2g\left( x \right).g'\left( x \right)}}{{2\sqrt {{f^2}\left( x \right) + {g^2}\left( x \right)} }}\)
\( \) \( = \frac{{2\left[ {f\left( x \right)f'\left( x \right) + g\left( x \right).g'\left( x \right)} \right]}}{{2\sqrt {{f^2}\left( x \right) + {g^2}\left( x \right)} }} \) \( = \frac{{f\left( x \right)f'\left( x \right) + g\left( x \right).g'\left( x \right)}}{{\sqrt {{f^2}\left( x \right) + {g^2}\left( x \right)} }}\).
Unit 1: Food for Life
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chủ đề 4. Sinh sản ở sinh vật
Chủ đề 1: Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Bài 9. Nhìn, nghe, phát hiện địch, chỉ mục tiêu, truyền tin liên lạc, báo cáo
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11