1. Nội dung câu hỏi
Người ta cần sơn tất cả các mặt của một khối bê tông hình chóp cụt tứ giác đều, đáy lớn có cạnh bằng 2m, đáy nhỏ có cạnh bằng 1m và cạnh bên bằng 2m (Hình 14). Tính tổng diện tích các bề mặt cần sơn.
2. Phương pháp giải
Sử dụng kiến thức về diện tích toàn phần của hình chóp cụt tứ giác đều: \(S = {S_{MB}} + {S_{ĐL}} + {S_{ĐN}}\) (MB: mặt bên, ĐL: đáy lớn, ĐN: đáy nhỏ)
3. Lời giải chi tiết
Diện tích đáy lớn là: \({S_{ĐL}} = {2^2} = 4\left( {{m^2}} \right)\)
Diện tích đáy nhỏ là: \({S_{ĐN}} = {1^2} = 1\left( {{m^2}} \right)\)
Giả sử các mặt bên được đặt tên và có dạng như hình vẽ dưới đây:
Tính được \(AH = \frac{1}{2}m\). Áp dụng định lí Pythagore vào tam giác AHD vuông tại H có:
\(DH = \sqrt {A{D^2} - A{H^2}} = \sqrt {{2^2} - {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt {15} }}{2}\left( m \right)\)
Tổng diện tích các mặt bên là:
\({S_{MB}} = 4{S_{ABCD}} = 4.\frac{1}{2}\left( {AB + CD} \right).DH = 3\sqrt {15} \left( {{m^2}} \right)\)
Tổng diện tích các mặt cần sơn là:
\(S = {S_{MB}} + {S_{ĐL}} + {S_{ĐN}} = 3\sqrt {15} + 4 + 1 = 3\sqrt {15} + 5\left( {{m^2}} \right)\).
Chương 3: Đại cương hóa học hữu cơ
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
Unit 2: Personnal Experiences - Kinh nghiệm cá nhân
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
Đề minh họa số 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11