Đề bài
Một cái cổng bán nguyệt rộng 6,8m, cao 3,4m. Mặt đường dưới cổng được chia thành hai làn cho xe ra vào
a) Viết phương trình mô phỏng cái cổng
b) Một chiếc xe tải rộng 2,4 m và cao 2,5 m đi đúng làn đường quy định có thể đi qua cổng được hay không?
Phương pháp giải - Xem chi tiết
Viết phương trình đường tròn tâm \(I\left( {a;b} \right)\) và bán kính R là \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
Lời giải chi tiết
a) Chọn hệ tọa độ sao cho tâm của cái cổng hình bán nguyệt có tọa độ \(\left( {0;0} \right)\)
Cộng rộng 6,8m, cao 3,4m nên đỉnh của cổng có tọa độ \(M\left( {0;3,4} \right)\)
Ta có phương trình mô phỏng cổng là: \({x^2} + {y^2} = 3,{4^2}\left( {y > 0} \right)\)
b) chiếc xe tải rộng 2,4 m và cao 2,5 m
Khi đó thiết diện của xe tải là hình chữ nhật dài 2,5m và rộng 2,4m.
Gọi \(B(2,4; 2,5)\), khi đó thiết diện xe là hình chữ nhật OABC với A(2,4;0) và C(0;2,5).
Xe có thể đi qua cổng nếu hình chữ nhật nằm phía trong đường tròn hay OB <R=3,4.
Ta có: \(OB = \sqrt {O{A^2} + O{C^2}} = \sqrt {2,{4^2} + 2,{5^2}} \approx 3,5\left( m \right) > R = 3,4\left( m \right)\)
Vậy nếu đi đúng làn đường quy định thì xe tải không thể đi qua cổng
Chương 4. Khí quyển
Chủ đề 5: Tín dụng và cách sử dụng các dịch vụ tín dụng
Chuyên đề 3. Đọc, viết và giới thiệu một tập thơ, tập truyện ngắn hoặc một tiểu thuyết
Đề thi học kì 1
Chương 1. Mệnh đề và tập hợp
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10