Đề bài
Phủ định của mệnh đề “\(\forall x \in \mathbb{R},{x^2} \ge 0\)” là mệnh đề:
A. “\(\exists x \in \mathbb{R},{x^2} \ge 0\)”
B. “\(\exists x \in \mathbb{R},{x^2} > 0\)”
C. “\(\exists x \in \mathbb{R},{x^2} \le 0\)”
D. “\(\exists x \in \mathbb{R},{x^2} < 0\)”
Phương pháp giải - Xem chi tiết
Mệnh đề phủ định của mệnh đề “\(\forall x \in X,P(x)\)” là “\(\exists x \in X,\overline {P(x)} \)”
Lời giải chi tiết
Mệnh đề phủ định của mệnh đề “\(\forall x \in \mathbb{R},{x^2} \ge 0\)” là “\(\exists x \in \mathbb{R},{x^2} < 0\)”
Chọn D.
Phần 1. Giới thiệu chương trình môn Sinh học và các cấp độ tổ chức của thế giới sống
Chuyên đề 1: Hệ phương trình bậc nhất ba ẩn
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 10
Bài 12. Kĩ thuật cấp cứu và chuyền thương
Chủ đề 4: Trách nhiệm với gia đình
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10