PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 61 trang 110 SBT toán 9 tập 2

Đề bài

Trong dân gian Việt Nam có lưu truyền quy tắc sau đây để tìm đường kính sau đây để tìm đường kính khi biết độ dài đường tròn: “Quân bát, phát tam, tồn ngũ, quân nhị”, tức là chia đường tròn thánh tám phần, bỏ đi ba phần, còn lại năm phần, lại chia đôi.

\(a)\) Theo quy tắc đó thì số \(π\) được lấy gần đúng là bao nhiêu\(?\)

\(b)\) Hãy áp dụng quy tắc trên để tính đường kính của một thân cây gần tròn bằng cách dùng dây quấn quanh thân cây.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức: Độ dài \(C\) của một đường tròn bán kính \(R\) được tính theo công thức: \(C=2\pi R.\) Nếu gọi \(d\) là đường kính đường tròn \((d=2R)\) thì \(C=\pi d.\)

Lời giải chi tiết

\(a)\) Gọi \(C\) là độ dài đường tròn, \(d\) là đường kính \( \Rightarrow \pi  = \displaystyle{C \over d}\)

Theo quy tắc trên ta tìm được đường kính \(d\) như sau:

Lấy \(C\) chia làm \(8\) phần, bỏ đi \(3\) và phần còn lại chia \(2.\)

Ta có: \(d = \left( \displaystyle{{C \over 8} - {3 \over 8}C} \right):2\)

            \( =\displaystyle {5 \over 8}C:2 = {{5C} \over {16}}\)

\(\pi  =\displaystyle {C \over d} = {C \over {\displaystyle{{5C} \over {16}}}} = {{16} \over 5} = 3,2\)

\(b)\) Lấy dây quấn quanh thân cây được độ dài đường tròn là \(C.\)

Suy ra đường kính thân cây là \(\displaystyle{5 \over {16}}C\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved