PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 61 trang 62 SBT toán 9 tập 2

Đề bài

Nếu mở cả hai vòi nước chảy vào một bể cạn thì sau \(2\) giờ \(55\) phút bể đầy nước. Nếu mở riêng từng vòi thì vòi thứ nhất làm đầy bể nhanh hơn vòi thứ hai là \(2\) giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu đầy bể?

Phương pháp giải - Xem chi tiết

* Các bước giải bài toán bằng cách lập phương trình

Bước 1: Gọi ẩn và đặt điều kiện cho ẩn.

Bước 2: Biểu diễn các đại lượng chưa biết qua ẩn và đại lượng đã biết.

Bước 3: Lập phương trình và giải phương trình.

Bước 4: Kiểm tra điều kiện và kết luận.

Lời giải chi tiết

Đổi 2 giờ 55 phút \(=\dfrac{35}{12}\) giờ.

Gọi thời gian chảy riêng đầy bể của vòi thứ nhất là \(\displaystyle x\) giờ

Điều kiện: \(\displaystyle x > \dfrac{35}{12}\)

Thì thời gian chảy riêng đầy bể của vòi thứ hai là \(\displaystyle x + 2\) giờ

Trong một giờ vòi thứ nhất chảy được \(\displaystyle {1 \over x}\) bể

Trong một giờ vòi thứ hai chảy được \(\displaystyle {1 \over {x + 2}}\) bể

Trong một giờ cả hai vòi chảy được \(\displaystyle 1:\dfrac{35}{12} = {{12} \over {35}}\) bể

Ta có phương trình: 

\(\displaystyle \eqalign{
& {1 \over x} + {1 \over {x + 2}} = {{12} \over {35}} \cr 
& \Rightarrow 35\left( {x + 2} \right) + 35x = 12x\left( {x + 2} \right) \cr 
& \Leftrightarrow 35x + 70 + 35x = 12{x^2} + 24x \cr 
& \Leftrightarrow 12{x^2} - 46x - 70 = 0 \cr 
& \Leftrightarrow 6{x^2} - 23x - 35 = 0 \cr 
& \Delta = (-23)^2 -4.6. (-35) = 1369 > 0 \cr 
& \sqrt \Delta = \sqrt {1369} = 37 \cr 
& {x_1} = {{23 + 37} \over {2.6}} = 5 \cr 
& {x_2} = {{23 - 37} \over {2.6}} = - {7 \over 6} \cr} \)

\(\displaystyle x_2=- {7 \over 6} < 2{{11} \over {12}}\) không thỏa mãn điều kiện: loại.

Vậy: vòi thứ nhất chảy riêng đầy bể sau \(\displaystyle 5\) giờ

Vòi thứ hai chảy riêng đầy bể sau \(\displaystyle 5 + 2 = 7\) giờ

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved