Đề bài
Cho đồ thị của hai hàm số bậc hai như dưới đây
Với mỗi đồ thị, hãy:
a) Tìm tọa độ đỉnh của đồ thị
b) Tìm khoảng đồng biến và khoảng nghịch biến của hàm số
c) Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của hàm số
d) Tìm tập xác định và tập giá trị của hàm số
Phương pháp giải - Xem chi tiết
Dựa vào đồ thị, xác định các giá trị: tọa độ đỉnh, sự biến thiên, các khoảng giá trị của x và y để tìm các giá trị tương ứng theo yêu cầu đề bài
Lời giải chi tiết
a) Xét Hình 6.14
+) Đồ thị hàm số có đỉnh \({I_1}(3;4)\)
+) Hàm số đồng biến trên \(( - \infty ;3)\) và nghịch biến trên \((3; + \infty )\)
+) Hàm số có giá trị lớn nhất là 4, đạt được khi x = 3
+) Hàm số có tập xác định là \(\mathbb{R}\) và tập giá trị là \({\rm{( - }}\infty {\rm{;4]}}\)
b) Xét Hình 6.15
+) Đồ thị hàm số có đỉnh \({I_2}(1; - 4)\)
+) Hàm số nghịch biến trên \(( - \infty ;1)\) và đồng biến trên \((1; + \infty )\)
+) Hàm số có giá trị nhỏ nhất là -4, đạt được khi x = 1
+) Hàm số có tập xác định là \(\mathbb{R}\) và tập giá trị là \({\rm{[}} - 4; + \infty )\)
Chương 3. Liên kết hóa học
Unit 4: Gender equality
Phần làm văn
Chương 5. Moment lực. Điều kiện cân bằng
Đề thi học kì 1
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10