PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 6.2 phần bài tập bổ sung trang 106 SBT toán 9 tập 2

Đề bài

Cho đường tròn tâm \(O\) bán kính \(R\) và điểm \(A\) (khác \(O\)) ở trong đường tròn đó. Một đường thẳng \(d\) thay đổi, luôn đi qua \(A,\) cắt đường tròn đã cho tại hai điểm là \(B\) và \(C.\) Tìm quỹ tích trung điểm \(I\) của đoạn thẳng \(BC.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

Muốn chứng minh quỹ tích (tập hợp) các điểm \(M\) thỏa mãn tính chất \(\tau\) là một hình \({\rm H}\) nào đó, ta phải chứng minh hai phần:

Phần thuận: Mọi điểm có tính chất \(\tau\) đều thuộc hình \(\rm H.\)

Phần đảo: Mọi điểm thuộc hình \(\rm H\) đều có tính chất \(\tau.\)

Kết luận: Quỹ tích (hay tập hợp) các điểm \(M\) có tính chất \(\tau\) là hình \(\rm H.\)

Thông thường với bài toán "Tìm quỹ tích..." ta nên dự đoán hình \(\rm H\) trước khi chứng minh:

+) Tập hợp các điểm \(M\) tạo với hai mút của đoạn thẳng \(AB\) cho trước một góc \(AMB\) bằng \(\alpha\) \((\alpha\) không đổi \()\) là hai cung tròn đối xứng với nhau qua \(AB\) (gọi là cung chứa góc \(\alpha\) vẽ trên đoạn \(AB\)).

+)Quỹ tích các điểm nhìn đoạn thẳng \(AB\) cho trước dưới một góc vuông là đường tròn đường kính \(AB\).

Lời giải chi tiết

 

Chứng minh thuận:

Đường tròn \((O)\) cho trước, điểm \(A \)cố định nên \(OA\) có độ dài không đổi.

\(∆OBC\) cân tại \(O\) (vì \(OB = OC\) = bán kính)

\(  IB = IC \;\;(gt)\) nên \(OI\) là đường trung tuyến vừa là đường cao

\( \Rightarrow  OI ⊥ BC\)

\( \Rightarrow \widehat {OIA} = 90^\circ \)

Đường thẳng \(d\) thay đổi nên \(B, C\) thay đổi thì \(I\) thay đổi tạo với \(2\) đầu đoạn \(OA\) cố định góc \(\widehat {OIA} = 90^\circ \). Vậy \(I\) chuyển động trên đường tròn đường kính \(OA.\)

Chứng minh đảo:

Lấy điểm \(I’\) bất kỳ trên đường tròn đường kính \(AO.\) Đường thẳng \(AI’\) cắt đường tròn (O) tại \(2\) điểm \(B’\) và \(C’.\)

Ta chứng minh: \(I’B = I’C’.\)

Trong đường tròn đường kính \(AO\) ta có \(\widehat {OI'A} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

\( \Rightarrow  OI'⊥ B'C'\)

\( \Rightarrow  I'B' = I'C' \) (đường kính vuông góc với dây cung thì đi qua trung điểm dây cung đó)

Vậy quỹ tích các điểm \(I\) là trung điểm của dây \(BC\) của đường tròn tâm \(O\) khi \(BC\) quay xung quanh điểm \(A\) cố định là đường tròn đường kính \(AO.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved