Bài 1. Định lí Ta-lét trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta-lét
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất (c.c.c)
Bài 6. Trường hợp đồng dạng thứ hai (c.g.c)
Bài 7. Trường hợp đồng dạng thứ ba (g.g)
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp đều
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Đề bài
Hình bình hành \(ABCD\) có hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O\) và \(AC = 2AB.\)
a) Vẽ trung tuyến \(BE\) của tam giác \(ABO.\) Chứng minh rằng \(\widehat {ABE} = \widehat {ACB}\).
b) Gọi \(M\) là trung điểm của cạnh \(BC\), chứng minh rằng \(EM\) vuông góc với đường chéo \(BD.\)
Phương pháp giải - Xem chi tiết
- Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.
- Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.
- Trong tam giác cân, đường phân giác ứng với cạnh đáy đồng thời là đường cao, đường trung tuyến, đường trung trực của cạnh đáy.
Lời giải chi tiết
a) Vì \(ABCD\) là hình bình hành nên \(\displaystyle AO = CO = {1 \over 2}AC\)
\(BE\) là trung tuyến của tam giác \(ABO\) nên \(\displaystyle AE = {1 \over 2}AO\)
Mặt khác, \( AC = 2AB \) (gt) nên \(AB = AO\) do đó \(\displaystyle AE = {1 \over 2}AB\)
Xét \(\Delta AEB\) và \(\Delta ABC\) có:
\(\widehat A\) chung
\(\displaystyle {{AE} \over {AB}} = {{AB} \over {AC}} = {1 \over 2}\)
\( \Rightarrow ∆ AEB\) đồng dạng \(∆ ABC\) (c.g.c)
\( \Rightarrow \widehat {ABE} = \widehat {ACB}\) (hai góc tương ứng).
b) Theo chứng minh ở câu a) \(∆ AEB\) đồng dạng \(∆ ABC\) theo tỉ số \(\displaystyle k = {1 \over 2}\) nên ta có \(\displaystyle BE = {1 \over 2}BC\) hay \(\displaystyle BE = BM={1 \over 2}BC\) (vì \(M\) là trung điểm của \(BC\))
\( \Rightarrow ∆ BEM\) cân tại \(B.\)
Xét \(∆EBC \) có \(\displaystyle {{BE} \over {BC}} = {{OE} \over {OC}} = {1 \over 2}\)
\( \Rightarrow BO \) là đường phân giác góc \(EBC\).
Xét tam giác \(BEM\) cân tại \(B\) có \(BO\) là đường phân giác nên \(BO\) đồng thời là đường cao ứng với cạnh đáy \(EM\).
Vậy \(EM\bot \,BD\).
CHƯƠNG I. TỨ GIÁC
Tải 30 đề thi học kì 1 của các trường Toán 8
Chương VIII. Sinh vật và môi trường
Tải 10 đề kiểm tra 15 phút - Chương 1 - Hóa học 8
Tải 25 đề thi học kì 1 Sinh 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8