Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Biết \(HB = 25cm, HC = 64cm\). Tính \(\widehat B,\widehat C\).
Phương pháp giải - Xem chi tiết
Áp dụng hệ thức lượng trong tam giác \(ABC\) có đường cao \(AH\), ta có:
\(A{H^2} = BH.CH\)
Sử dụng tỉ số lượng giác của góc nhọn:
\(\tan \alpha = \dfrac{{AB}}{{AC}}.\)
Lời giải chi tiết
Xét tam giác ABC vuông tại A có chiều cao AH, theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
\(A{H^2} = HB.HC\)
Suy ra:
\(AH = \sqrt {HB.HC} = \sqrt {25.64} = \sqrt {1600} = 40\) (cm)
Trong tam giác vuông ABH, ta có:
\(tanB = \dfrac{{AH}}{{HB}} = \dfrac{{40}}{{25}} = 1,6\)
Suy ra:
\(\widehat B \approx 57^\circ 59'\)
Vì tam giác \(ABC\) vuông nên \(\widehat B + \widehat C = 90^\circ \)
Suy ra:
\(\widehat C = 90^\circ - \widehat B = 90^\circ - 57^\circ 59' = 32^\circ 1'\)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 9
HỌC KÌ 1
Bài 19. Thực hành: Đọc bản đồ, phân tích và đánh giá ảnh hưởng của tài nguyên khoáng sản đối với phát triển công nghiệp ở Trung du và miền núi Bắc Bộ
Đề thi vào 10 môn Toán Kiên Giang
Bài 17: Nghĩa vụ bảo vệ tổ quốc