1. Nội dung câu hỏi
Cho hàm số mũ \(f\left( x \right) = {a^x}(a > 0)\). Chứng minh rằng:
a) \(\frac{{f\left( {x + 1} \right)}}{{f\left( x \right)}} = a\);
b) \(f\left( { - x} \right) = \frac{1}{{f\left( x \right)}}\)
c) \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) \cdot f\left( {{x_2}} \right)\).
2. Phương pháp giải
Áp dụng tính chất của lũy thừa với số mũ thực
Với \(a\) là số thực dương ta có: \({a^0} = 1;{a^{ - n}} = \frac{1}{{{a^n}}}\).
Với \(a > 0,b > 0\) và \(m,n\) là các số thực, ta có:
\({a^m}.{a^n} = {a^{m + n}}\); \(\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\);
\({\left( {{a^m}} \right)^n} = {a^{mn}};\) \({\left( {ab} \right)^m} = {a^m}{b^m}\);
\({\left( {\frac{a}{b}} \right)^m} = \frac{{{a^m}}}{{{b^m}}}\)
3. Lời giải chi tiết
\({\rm{a)\;}}\frac{{f\left( {x + 1} \right)}}{{f\left( x \right)}} = \frac{{{a^{x + 1}}}}{{{a^x}}} = a{\rm{;\;}}\)
\({\rm{b)\;}}f\left( { - x} \right) = {a^{ - x}} = \frac{1}{{{a^x}}} = \frac{1}{{f\left( x \right)}}\)
\({\rm{c)\;}}f\left( {{x_1} + {x_2}} \right) = {a^{{x_1} + {x_2}}} = {a^{{x_1}}} \cdot {a^{{x_2}}} = f\left( {{x_1}} \right) \cdot f\left( {{x_2}} \right)\).
Unit 11: Careers
Bài 6: Sulfur và sulfur dioxide
Từ vựng
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
PHẦN HAI: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11