Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Tính diên tích của hình bình hành có hai cạnh \(12\,cm\) và \(15\,cm,\) góc tạo bởi hai cạnh ấy bằng \(100\)\(^\circ \).
Phương pháp giải - Xem chi tiết
Áp dụng các hệ thức về cạnh và góc trong tam giác vuông, tam giác \(ABC\) vuông tại \(A\) có \(AB=c,\,AC=b,\, BC=a\) thì:
\(b=a.sin\,B=a.cos\,C\)
Diện tích hình bình hành bằng tích chiều cao với cạnh đáy tương ứng.
Lời giải chi tiết
Giả sử hình bình hành \(MNPQ\) có \(MN = 12\,cm,\, MQ = 15\,cm,\) \(\widehat {NMQ} = 110^\circ \)
Ta có: \(\widehat {NMQ} + \widehat {MNP} = 180^\circ \) (hai góc trong cùng phía)
Suy ra: \(\widehat {MNP} = 180^\circ - \widehat {NMQ}\)
\( = 180^\circ - 110^\circ = 70^\circ \)
Kẻ \(MR \,\bot\, NP\)
Trong tam giác vuông \(MNR,\) ta có:
\(\eqalign{
& MR = MN.\sin \widehat {MNP} \cr
& = 12.\sin 70^\circ \approx 11,276\,(cm) \cr} \)
Vậy \({S_{MNPQ}} = MR.MQ \approx 11,276.15\) \(= 169,14\) \((cm^2).\)
Chương 1. Các loại hợp chất vô cơ
Đề thi vào 10 môn Văn Sơn La
Đề thi vào 10 môn Văn Hậu Giang
SOẠN VĂN 9 TẬP 2
Đề thi vào 10 môn Toán Thanh Hóa