PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

Bài 64 trang 16 SBT toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(\displaystyle{{9x - 0,7} \over 4} - {{5x - 1,5} \over 7} = {{7x - 1,1} \over 3} \) \(\displaystyle - {{5\left( {0,4 - 2x} \right)} \over 6}\)

Phương pháp giải:

*) Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :

+ Quy đồng mẫu hai vế phương trình và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm nghiệm của phương trình dạng \(ax+b=0\).

Lời giải chi tiết:

\(\displaystyle{{9x - 0,7} \over 4} - {{5x - 1,5} \over 7} = {{7x - 1,1} \over 3} \) \(\displaystyle- {{5\left( {0,4 - 2x} \right)} \over 6}\)

\(\displaystyle \Leftrightarrow {{21\left( {9x - 0,7} \right)} \over {84}} - {{12\left( {5x - 1,5} \right)} \over {84}}\) \(\displaystyle= {{28\left( {7x - 1,1} \right)} \over {84}} - {{70\left( {0,4 - 2x} \right)} \over {84}}\)

\(\displaystyle \Leftrightarrow 21\left( {9x - 0,7} \right) - 12\left( {5x - 1,5} \right) \) \(\displaystyle = 28\left( {7x - 1,1} \right) - 70\left( {0,4 - 2x} \right)  \) 

\(\displaystyle  \Leftrightarrow 189x - 14,7 - 60x + 18 \)\(\displaystyle= 196x - 30,8 - 28 + 140x  \) 

\(\displaystyle \Leftrightarrow 189x - 60x - 196x - 140x \) \(\displaystyle=  - 30,8 - 28 + 14,7 - 18  \) 

\(\displaystyle\Leftrightarrow  - 207x =  - 62,1    \Leftrightarrow x = 0,3 \)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{  0,3\right \}.\)

LG b

\(\displaystyle{{3x - 1} \over {x - 1}} - {{2x + 5} \over {x + 3}} \) \(\displaystyle= 1 - {4 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}\)

Phương pháp giải:

*) Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

\(\displaystyle{{3x - 1} \over {x - 1}} - {{2x + 5} \over {x + 3}} \) \(\displaystyle = 1 - {4 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}\) ĐKXĐ: \(\displaystyle x \ne 1\)và \(\displaystyle x \ne- 3\)

\(\displaystyle \Leftrightarrow {{\left( {3x - 1} \right)\left( {x + 3} \right)} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} \)\(\displaystyle- {{\left( {2x + 5} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} \)\(\displaystyle= {{\left( {x - 1} \right)\left( {x + 3} \right)} \over {\left( {x - 1} \right)\left( {x + 3} \right)}} \)\(\displaystyle- {4 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}  \) 

\(\displaystyle  \Rightarrow \left( {3x - 1} \right)\left( {x + 3} \right) - \left( {2x + 5} \right)\left( {x - 1} \right) \)\(\displaystyle = \left( {x - 1} \right)\left( {x + 3} \right) - 4  \)

\(\displaystyle  \Leftrightarrow 3{x^2} + 9x - x - 3 - 2{x^2} + 2x - 5x \)\(\displaystyle+ 5 = {x^2} + 3x - x - 3 - 4  \) 

\(\displaystyle  \Leftrightarrow 3{x^2} - 2{x^2} - {x^2} + 9x - x + 2x \)\(\displaystyle - 5x - 3x + x =  - 3 - 4 + 3 - 5  \) 

\(\displaystyle  \Leftrightarrow 3x =  - 9  \)

\(\displaystyle \Leftrightarrow x =  - 3\) (loại)

 Vậy phương trình vô nghiệm.

LG c

\(\displaystyle{3 \over {4\left( {x - 5} \right)}} + {{15} \over {50 - 2{x^2}}} =  - {7 \over {6\left( {x + 5} \right)}}\)

Phương pháp giải:

*) Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

\(\displaystyle{3 \over {4\left( {x - 5} \right)}} + {{15} \over {50 - 2{x^2}}} =  - {7 \over {6\left( {x + 5} \right)}}\) ĐKXĐ: \(\displaystyle x \ne  \pm 5\)

\(\displaystyle  \Leftrightarrow {3 \over {4\left( {x - 5} \right)}} + {{15} \over {2\left( {25 - {x^2}} \right)}} \)\(\displaystyle =  - {7 \over {6\left( {x + 5} \right)}}  \) 

\(\displaystyle  \Leftrightarrow {3 \over {4\left( {x - 5} \right)}} - {{15} \over {2\left( {x + 5} \right)\left( {x - 5} \right)}} \)\(\displaystyle=  - {7 \over {6\left( {x + 5} \right)}}  \)

\(\displaystyle  \Leftrightarrow {{9\left( {x + 5} \right)} \over {12\left( {x + 5} \right)\left( {x - 5} \right)}} \)\(\displaystyle - {{90} \over {12\left( {x + 5} \right)\left( {x - 5} \right)}} \)\(\displaystyle=  - {{14\left( {x - 5} \right)} \over {12\left( {x + 5} \right)\left( {x - 5} \right)}}  \)

\(\displaystyle \Rightarrow 9\left( {x + 5} \right) - 90 =  - 14\left( {x - 5} \right)  \)

\(\displaystyle\Leftrightarrow 9x + 45 - 90 =  - 14x + 70  \)

\(\displaystyle  \Leftrightarrow 9x + 14x = 70 - 45 + 90  \)

\(\displaystyle  \Leftrightarrow 23x = 115 \)

\(\displaystyle \Leftrightarrow x = 5\) (loại)

 Vậy phương trình vô nghiệm.

LG d

\(\displaystyle{{8{x^2}} \over {3\left( {1 - 4{x^2}} \right)}} = {{2x} \over {6x - 3}} - {{1 + 8x} \over {4 + 8x}}\)

Phương pháp giải:

*) Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

\(\displaystyle{{8{x^2}} \over {3\left( {1 - 4{x^2}} \right)}} = {{2x} \over {6x - 3}} - {{1 + 8x} \over {4 + 8x}}\) ĐKXĐ: \(\displaystyle x \ne  \pm {1 \over 2}\)

\(\displaystyle \Leftrightarrow {{8{x^2}} \over {3\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} = {{ - 2x} \over {3\left( {1 - 2x} \right)}} \)\(\displaystyle - {{1 + 8x} \over {4\left( {1 + 2x} \right)}}  \)

\(\displaystyle \Leftrightarrow {{32{x^2}} \over {12\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} \)\(\displaystyle = {{ - 8x\left( {1 + 2x} \right)} \over {12\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} \)\(\displaystyle - {{3\left( {1 + 8x} \right)\left( {1 - 2x} \right)} \over {12\left( {1 - 2x} \right)\left( {1 + 2x} \right)}}  \)

\(\displaystyle \Rightarrow 32{x^2} =  - 8x (1+2x) \)\(\displaystyle- 3\left( {1 - 2x + 8x - 16{x^2}} \right)  \)

\(\displaystyle \Leftrightarrow 32{x^2} =  - 8x - 16{x^2} - 3 - 18x \)\(\displaystyle + 48{x^2}  \) 

\(\displaystyle  \Leftrightarrow 32{x^2} + 16{x^2} - 48{x^2} + 18x + 8x \) \(=  - 3  \)

\(\displaystyle  \Leftrightarrow 26x =  - 3 \)

\(\displaystyle \Leftrightarrow x =  - {3 \over {26}}\) (thỏa mãn)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{  - {3 \over {26}} \right \}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved