Đề bài
Tìm các giá trị của tham số m để:
a) Hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\) có tập xác định \(\mathbb{R}\)
b) Tam thức bậc hai \(y = - {x^2} + mx - 1\) có dấu không phụ thuộc vào x
c) Hàm số \(y = \sqrt { - 2{x^2} + mx - m - 6} \) có tập xác định chỉ gồm một phần tử
Lời giải chi tiết
a) Xét hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\)
+) Với m = 0 thì hàm số có dạng \(y = \frac{1}{{\sqrt 5 }}\) có tập xác định là \(\mathbb{R}\). Do đó m = 0 thỏa mãn
+) Với m ≠ 0, hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\) có tập xác định \(\mathbb{R}\) khi và chỉ khi \(m{x^2} - 2m{\rm{x}} + 5 > 0,\forall x \in \mathbb{R}\)
Ta có: \(m{x^2} - 2m{\rm{x}} + 5 > 0,\forall x \in \mathbb{R}\)\( \Leftrightarrow m > 0\) và \(\Delta ' = {m^2} - 5m < 0\) \( \Leftrightarrow m > 0\) và \(0 < m < 5\) \( \Leftrightarrow 0 < m < 5\)
Kết hợp các điều kiện, với \(m \in {\rm{[}}0;5)\) thì hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\) có tập xác định \(\mathbb{R}\)
b) Tam thức bậc hai \(y = - {x^2} + mx - 1\) có a = -1 < 0
Khi đó\(y = - {x^2} + mx - 1\) có dấu không phụ thuộc vào x khi và chỉ khi \(y = - {x^2} + mx - 1\) < 0 \(\forall x \in \mathbb{R}\)
\( \Leftrightarrow \)\(\Delta = {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2\)
Vậy với \(m \in ( - 2;2)\) thì Tam thức bậc hai \(y = - {x^2} + mx - 1\) có dấu không phụ thuộc vào x
c) Hàm số \(y = \sqrt { - 2{x^2} + mx - m - 6} \)có tập xác định chỉ gồm một phần tử khi và chỉ khi
\( - 2{x^2} + mx - m - 6 = 0\) có nghiệm kép \( \Leftrightarrow \Delta = {m^2} - 8(m + 6) = 0\)
\( \Leftrightarrow {m^2} - 8m - 48 = 0 \Leftrightarrow m = - 4\)hoặc m = 12
Vậy với \(m \in {\rm{\{ }} - 4;12{\rm{\} }}\) thì Hàm số \(y = \sqrt { - 2{x^2} + mx - m - 6} \)có tập xác định chỉ gồm một phần tử .
Chủ đề 5. Chuyển động tròn và biến dạng
Chương 5: Thủy quyển
Chương 1. Thành phần hóa học của tế bào
Hiền tài là nguyên khí của quốc gia
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 10 - Chân trời sáng tạo
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10