PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 67 trang 87 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC.\) Điểm \(M\) nằm trên đường phân giác của góc ngoài đỉnh \(C\) (\(M\) khác \(C\)). Chứng minh rằng \(AC + CB < AM + MB.\)

Phương pháp giải - Xem chi tiết

+) Sử dụng tính chất đường trung trực: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng đó.

+) Trong tam giác cân, đường trung tuyến ứng với cạnh đáy cũng là đường trung trực, đường phân giác.

+) Sử dụng bất đẳng thức tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.

Lời giải chi tiết

 

Trên tia đối tia \(CB\) lấy điểm \(E\) sao cho \(CE = CA.\) Nối \(MA,\) \(ME\) nên \(∆ ACE\) cân tại \(C\) có \(CM\) là đường phân giác nên \(CM\) cũng là đường trung trực (tính chất tam giác cân)

\(⇒ MA = ME\) ( tính chất đường trung trực)

Ta có:  \(AC + BC = BC + CE = BE \;\;(1)\) (vì \(CE = AC\))

\( MA + MB = MB + ME  \;\;      (2)\)

Trong \(∆ MBE\) ta có: \(BE < MB + ME\) ( bất đẳng thức tam giác) \( (3)\)

Từ \((1), (2)\) và \((3)\) suy ra:  \(AC + BC < MA + MB\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved