Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Khử mẫu của mỗi biểu thức lấy căn và rút gọn ( nếu được):
LG câu a
LG câu a
\( \displaystyle\sqrt {{2 \over 3}} \);
Phương pháp giải:
Với \(A, B\) mà \(A.B \ge 0\) và \(B \ne 0\) ta có:
\( \displaystyle\sqrt {\dfrac{A}{B}} = \sqrt {\dfrac{{AB}}{{{B^2}}}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}.\)
Lời giải chi tiết:
\( \displaystyle\sqrt {{2 \over 3}} \) = \( \displaystyle\sqrt {{{2.3} \over {{3^2}}}} = {1 \over 3}\sqrt 6\)
LG câu b
LG câu b
\( \displaystyle\sqrt {{{{x \over 5}}^2}} \) với \( x \ge 0\);
Phương pháp giải:
Với \(A, B\) mà \(A.B \ge 0\) và \(B \ne 0\) ta có:
\( \displaystyle\sqrt {\dfrac{A}{B}} = \sqrt {\dfrac{{AB}}{{{B^2}}}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}.\)
Lời giải chi tiết:
\( \displaystyle\sqrt {{{{x \over 5}}^2}} \) \( \displaystyle = \sqrt {{{{x^2}} \over 5}} = \sqrt {{{{x^2}.5} \over {{5^2}}}} = {x \over 5}\sqrt 5 \) (với \( x \ge 0\))
LG câu c
LG câu c
\( \displaystyle\sqrt {{3 \over x}} \) với \(x>0\);
Phương pháp giải:
Với \(A, B\) mà \(A.B \ge 0\) và \(B \ne 0\) ta có:
\( \displaystyle\sqrt {\dfrac{A}{B}} = \sqrt {\dfrac{{AB}}{{{B^2}}}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}.\)
Lời giải chi tiết:
\( \displaystyle\sqrt {{3 \over x}} \) \( \displaystyle = \sqrt {{{3x} \over {{x^2}}}} = {1 \over {\left| x \right|}}\sqrt {3x} = {1 \over x}\sqrt {3x} \) (với \(x>0\))
LG câu d
LG câu d
\( \displaystyle\sqrt {{x^2} - {{{x \over 7}}^2}} \) với \(x<0\).
Phương pháp giải:
Với \(A, B\) mà \(A.B \ge 0\) và \(B \ne 0\) ta có:
\( \displaystyle\sqrt {\dfrac{A}{B}} = \sqrt {\dfrac{{AB}}{{{B^2}}}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}.\)
Lời giải chi tiết:
\( \displaystyle\sqrt {{x^2} - {{{x \over 7}}^2}} \) \( \displaystyle = \sqrt {{{7{x^2} - {x^2}} \over 7}} \)
\( = \sqrt {\dfrac{{6{x^2}}}{7}} \)\( \displaystyle = \sqrt {{{42{x^2}} \over {49}}} \)\(\displaystyle = {{\left| x \right|} \over 7}\sqrt {42} = - {x \over 7}\sqrt {42} \) (với \(x<0\))
Tải 20 đề kiểm tra 1 tiết học kì 2 Văn 9
Đề thi vào 10 môn Văn Hậu Giang
Đề thi vào 10 môn Toán Hải Dương
CHƯƠNG IV. BẢO VỆ MÔI TRƯỜNG
Đề thi vào 10 môn Toán Vĩnh Phúc