PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 68 trang 168 SBT toán 9 tập 1

Đề bài

Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B.\) Gọi \(I\) là trung điểm của \(OO’.\) Qua \(A\) vẽ đường thẳng vuông góc với \(IA,\) cắt các đường tròn \((O)\) và \((O’)\) tại \(C\) và \(D\) (khác \(A\)). Chứng minh rằng \(AC = AD.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức: 

+) Nếu các đường thẳng song song cách đều cắt một đường thẳng thì chúng chắn trên đường thẳng đó các đoạn thẳng liên tiếp bằng nhau.

+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Lời giải chi tiết

 

Kẻ \(OH ⊥ CD, O’K ⊥ CD\)

Ta có: \(IA ⊥ CD\)

Suy ra: \(OH // IA // O’K\)

Theo giả thiết: \(IO = IO’\)

Suy ra: \(AH = AK\)  \( (1)\) (tính chất đường thẳng song song cách đều)

Xét đường tròn (O) có \(OH ⊥ AC\) mà OH là 1 phần đường kính và AC là dây cung

Suy ra: \(HA = HC = \displaystyle {1 \over 2}AC\) (quan hệ giữa đường kính và dây cung)

\(⇒AC = 2AH   \;       (2)\)

Xét đường tròn (O') có \(O’K ⊥ AD\) mà O'K là 1 phần đường kính và AD là dây cung

Suy ra: \(KA = KD = \displaystyle {1 \over 2}AD\) ( quan hệ giữa đường kính và dây cung)

\(⇒ AD = 2AK     \;    (3)\)

Từ \((1), (2)\) và \((3)\) suy ra: \(AC = AD.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved