Câu hỏi 7 - Mục Bài tập trang 31

1. Nội dung câu hỏi

Tìm hoành độ các giao điểm của đồ thị hàm số \(y = \sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right)\) với trục hoành.


2. Phương pháp giải

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải: Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi  - \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha  = m\).

Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi  - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

 

3. Lời giải chi tiết 

Phương trình hoành độ giao điểm của đồ thị hàm số \(y = \sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right)\) với trục hoành là:

\(\sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right) = 0 \) \( \Leftrightarrow \sin 3x = \cos \left( {\frac{{3\pi }}{4} - x} \right) \) \( \Leftrightarrow \sin 3x = \sin \left[ {\frac{\pi }{2} - \left( {\frac{{3\pi }}{4} - x} \right)} \right]\)

\( \Leftrightarrow \sin 3x = \sin \left( {\frac{{ - \pi }}{4} + x} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{ - \pi }}{4} + x + k2\pi \\3x = \pi  - \left( {\frac{{ - \pi }}{4} + x} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - \pi }}{8} + k\pi \\x = \frac{{5\pi }}{{16}} + \frac{{k\pi }}{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy hoành độ giao điểm của đồ thị hàm số \(y = \sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right)\) với trục hoành là: \(x = \frac{{ - \pi }}{8} + k\pi \left( {k \in \mathbb{Z}} \right);x = \frac{{5\pi }}{{16}} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey

Chatbot GPT

timi-livechat
Đặt câu hỏi