1. Nội dung câu hỏi
Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằng a. Biết \(d\left( {A,\left( {A'BC} \right)} \right) = \frac{{a\sqrt {57} }}{{12}}\). Tính \({V_{ABC.A'B'C'}}\).
2. Phương pháp giải
+ Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)).
+ Sử dụng kiến thức về thể tích khối lăng trụ: Thể tích khối lăng trụ bằng diện tích đáy nhân với chiều cao: \(V = S.h\)
3. Lời giải chi tiết
Vì ABC. A’B’C’ là lăng trụ đều \(A'A \bot \left( {ABC} \right) \Rightarrow A'A \bot BC\)
Gọi I là trung điểm của BC. Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, \(AI \bot BC\)
Ta có: \(A'A \bot BC\), \(AI \bot BC\) nên \(BC \bot \left( {A'AI} \right)\)
Trong mặt phẳng (A’AI), kẻ \(AH \bot A'I\left( {H \in A'I} \right) \Rightarrow BC \bot AH\)
Vì \(BC \bot AH,AH \bot A'I\) nên \(AH \bot \left( {A'BC} \right)\). Do đó, \(d\left( {A,\left( {A'BC} \right)} \right) = AH = \frac{{a\sqrt {57} }}{{12}}\).
Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, tam giác ABI vuông tại I. Suy ra: \(AI = AB.\sin \widehat {ABC} = \frac{{a\sqrt 3 }}{2}\)
Vì \(A'A \bot \left( {ABC} \right) \Rightarrow A'A \bot AI\)
Tam giác A’AI vuông tại A, AH là đường cao có:
\(\frac{1}{{A'{A^2}}} = \frac{1}{{A{H^2}}} - \frac{1}{{A{I^2}}} = \frac{{144}}{{57{a^2}}} - \frac{4}{{3{a^2}}} = \frac{{68}}{{57{a^2}}} \\ \Rightarrow A'A = \frac{{a\sqrt {969} }}{{34}}\)
Thể tích lăng trụ ABC. A’B’C’ là: \({V_{ABC.A'B'C'}} = A'A.{S_{ABC}} = A'A.\frac{1}{2}.AI.BC \\ = \frac{1}{2}\frac{{a\sqrt {969} }}{{34}}.\frac{{a\sqrt 3 }}{2}.a = \frac{{3{a^3}\sqrt {323} }}{{136}}\).
Phần một. CÔNG DÂN VỚI KINH TẾ
CHƯƠNG IV. TỪ TRƯỜNG
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
Unit 8: Conservation
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Vật lí lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11