1. Nội dung câu hỏi
Chứng minh mỗi đẳng thức sau là đúng:
a) \(\sin {45^o}.\cos {30^o} + \cos \left( { - {{45}^o}} \right).\sin \left( { - {{30}^o}} \right) = \sin {15^o}\)
b) \(\tan \frac{{9\pi }}{{20}} = \frac{{1 + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{5}}}\)
2. Phương pháp giải
a) Sử dụng công thức \(\sin \left( {a - b} \right) = \sin a\cos b - \sin b\cos a\)
b) Sử dụng công thức \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\)
3. Lời giải chi tiết
a) Ta có:
\(\sin {45^o}.\cos {30^o} + \cos \left( { - {{45}^o}} \right).\sin \left( { - {{30}^o}} \right) = \sin {45^o}.\cos {30^o} + \cos {45^o}.\left( { - \sin {{30}^o}} \right)\)
\( = \sin {45^o}.\cos {30^o} - \cos {45^o}.\sin {30^o} = \sin \left( {{{45}^o} - {{30}^o}} \right) = \sin {15^o}\)
Bài toán được chứng minh.
b) Ta có:
\(\tan \frac{{9\pi }}{{20}} = \tan \left( {\frac{\pi }{4} + \frac{\pi }{5}} \right) = \frac{{\tan \frac{\pi }{4} + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{4}.\tan \frac{\pi }{5}}} = \frac{{1 + \tan \frac{\pi }{5}}}{{1 - \tan \frac{\pi }{5}}}\) (Điều phải chứng minh)
CHƯƠNG VII: HIĐROCABON THƠM. NGUỒN HIĐROCABON THIÊN NHIÊN
Bài 8. Lợi dụng địa hình, địa vật
Review 3 (Units 6-8)
Chủ đề 3: Quá trình giành độc lập dân tộc của các quốc gia Đông Nam Á
Unit 6: High-flyers
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11