1. Nội dung câu hỏi
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) và \(SA = SC\), \(SB = SD\). Chứng minh rằng
a) \(SO \bot \left( {ABCD} \right)\);
b) \(AC \bot \left( {SBD} \right)\) và \(BD \bot \left( {SAC} \right)\).
2. Phương pháp giải
a) Chứng minh tam giác \(SAC,SBD\) cân, \(O\) là trung điểm \(AC,BD\) từ đó suy ra
\(SO \bot AC,BD \Rightarrow SO \bot \left( {ABCD} \right)\).
b) Chứng minh \(AC \bot BD,AC \bot SO\) suy ra \(AC \bot \) (SBD).
Chứng minh \(AC \bot BD,BD \bot SO\) suy ra \(AC \bot \) (SBD).
3. Lời giải chi tiết
a) Vì \(O\) là giao điểm của \(AC\) và \(BD\) nên \(O\) là trung điểm của \(AC\) và \(BD\) suy ra tam giác \(SAC,SBD\) cân, suy ra \(SO \bot AC,SO \bot BD\).
Do đó \(SO \bot \left( {ABCD} \right)\).
b) Vì \(AC \bot BD,AC \bot SO\) nên \(AC \bot \) (SBD).
Tương tự, ta được \(BD \bot \left( {SAC} \right)\).
Tải 15 đề thi học kì 2 - Hóa học 11
Chuyên đề 2: Chiến tranh và hòa bình trong thế kỉ XX
Test Yourself 2
Bài 15: Dẫn xuất halogen
Chuyên đề 3: Đọc, viết và giới thiệu về một tác phẩm văn học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11