Đề bài
Trong mặt phẳng \(Oxy\), cho hai điểm \(A\left( { - 3;0} \right),B\left( {1; - 2} \right)\) và đường thẳng \(d:x + y - 1 = 0\)
a) Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d
b) Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM
Phương pháp giải - Xem chi tiết
+ Thay từng điểm A, B vào đường thẳng d. Tích nhận được là số dương thì hai điểm nằm cùng phía với đường thẳng d. Tích nhận được là số âm thì hai đường thẳng nằm khác phía với đường thẳng d.
+ AB cố định, nên chu vi tam giác nhỏ nhất khi MA + MB nhỏ nhất.
Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có \(MA + MB \ge MA' + MB \ge A'B\).
Dấu bằng xảy ra khi \(M = A'B \cap d\)
Lời giải chi tiết
a) Ta có \(\left( { - 3 + 0 - 1} \right)\left( {1 - 2 - 1} \right) = 8 > 0\) nên hai điểm A, B nằm cùng phía với đường thẳng d
b) AB cố định, nên chu vi tam giác nhỏ nhất khi MA + MB nhỏ nhất.
Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có \(MA + MB \ge MA' + MB \ge A'B\).
Dấu bằng xảy ra khi \(M = A'B \cap d\)
+ Gọi điểm H là chân đường cao hạ từ A đến đường thẳng d, khi đó AH vuông góc với d \( \Rightarrow \overrightarrow {{v_{AH}}} = \overrightarrow {{n_d}} = \left( {1;1} \right) \Rightarrow \overrightarrow {{n_{AH}}} = \left( {1; - 1} \right)\)
+ Phương trình đường thẳng AH đi qua \(A\left( { - 3;0} \right)\) và có vectơ chỉ phương \(\overrightarrow {{n_{AH}}} = \left( {1; - 1} \right)\): \(AH:1\left( {x + 3} \right) - 1\left( {y - 0} \right) = 0 \Rightarrow AH:x - y + 3 = 0\)
+ \(H = AH \cap d \Rightarrow H:\left\{ \begin{array}{l}x + y - 1 = 0\\x - y + 3 = 0\end{array} \right. \Rightarrow H\left( { - 1;2} \right)\)
+ Điểm A’ đối xứng với A qua d khi đó H là trung điểm của AA’
Suy ra \(A'\left( {2.\left( { - 1} \right) + 3;2.2 - 0} \right) \Rightarrow A'\left( {1;4} \right)\)
+ Viết phương trình đưởng thẳng A’B: \(\overrightarrow {A'B} = \left( {0;6} \right) = \left( {0;1} \right) \Rightarrow \overrightarrow n = \left( {0;1} \right)\)
\(A'B:x - 1 = 0\)
+ \(A'B \cap d \Rightarrow \left\{ \begin{array}{l}x - 1 = 0\\x + y - 1 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 1\\y = 0\end{array} \right. \Rightarrow M\left( {1;0} \right)\)
Chương 5. Moment lực. Điều kiện cân bằng
Test Yourself 2
Unit 5: Ambition
Đề thi học kì 1
Chủ đề 8: Bảo vệ môi trường tự nhiên
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10