Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Xác định giá trị biểu thức sau theo cách thích hợp:
\( \displaystyle{1 \over {\sqrt 2 + \sqrt 1 }} + {1 \over {\sqrt 3 + \sqrt 2 }} + {1 \over {\sqrt 4 + \sqrt 3 }}\)
Phương pháp giải - Xem chi tiết
Áp dụng:
\(\dfrac{A}{{\sqrt B \pm \sqrt C }} = \dfrac{{A(\sqrt B \mp \sqrt C)}}{{B - C}}\) với \(B, C\ge 0; B\ne C\).
Lời giải chi tiết
Ta có:
\( \displaystyle{1 \over {\sqrt 2 + \sqrt 1 }} + {1 \over {\sqrt 3 + \sqrt 2 }} + {1 \over {\sqrt 4 + \sqrt 3 }}\)
\( \displaystyle = {{\sqrt 2 - \sqrt 1 } \over {(\sqrt 2 + \sqrt 1 )(\sqrt 2 - \sqrt 1 )}} \)\(\displaystyle + {{\sqrt 3 - \sqrt 2 } \over {(\sqrt 3 + \sqrt {2)} (\sqrt 3 - \sqrt 2 )}} \)\(\displaystyle + {{\sqrt 4 - \sqrt 3 } \over {(\sqrt 4 + \sqrt 3 )(\sqrt 4 - \sqrt 3 )}}\)
\( \displaystyle = {{\sqrt 2 - \sqrt 1 } \over {2 - 1}} \)\(\displaystyle + {{\sqrt 3 - \sqrt 2 } \over {3 - 2}} \)\(\displaystyle + {{\sqrt 4 - \sqrt 3 } \over {4 - 3}}\)
\( \displaystyle = \sqrt 2 - \sqrt 1 + \sqrt 3 - \sqrt 2 \)\( + \sqrt 4 - \sqrt 3 \)
\( \displaystyle = - \sqrt 1 + \sqrt 4 \)\( = - 1 + 2 = 1\)
Chương 3. Phi kim. Sơ lược về bảng tuần hoàn các nguyên tố hóa học
CHƯƠNG II. MỘT SỐ VẤN ĐỀ XÃ HỘI CỦA TIN HỌC
Đề thi vào 10 môn Văn Hà Nội
Đề thi vào 10 môn Toán Thanh Hóa
Tiếng Anh 9 mới tập 2