Đề bài
Lập phương trình tổng quát của các trục tọa độ
Phương pháp giải - Xem chi tiết
Trục số \(Ox,Oy\) đi qua điểm O và có vectơ pháp tuyến lần lượt là \(\overrightarrow j = \left( {0;1} \right);\overrightarrow i = \left( {1;0} \right)\).
Lời giải chi tiết
Trục \({\rm{O}}y\) đi qua \(O\left( {0;0} \right)\) và nhận \(\overrightarrow i = \left( {1;0} \right)\) là vectơ pháp tuyến, do đó phương trình tổng quát của trục Ox là \(1.\left( {x - 0} \right) + 0.\left( {y - 0} \right) = 0 \Leftrightarrow x = 0\).
Trục \({\rm{O}}x\) đi qua \(O\left( {0;0} \right)\) và nhận \(\overrightarrow j = \left( {0;1} \right)\) là vectơ pháp tuyến, do đó phương trình tổng quát của trục Oy là \(0.\left( {x - 0} \right) + 1.\left( {y - 0} \right) = 0 \Leftrightarrow y = 0\).
Chủ đề 5. Văn minh Đông Nam Á
Unit 5: The environment
Unit 1. People
Đề kiểm tra giữa học kì 2
Đề thi học kì 1
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10