Đề bài
Cho đường thẳng \(\left( C \right)\) có phương trình \({x^2} + {y^2} + 6x - 4y - 12 = 0\). Viết phương trình tiếp tuyến của \(\Delta \) của \(\left( C \right)\) tại điểm \(M\left( {0, - 2} \right)\)
Phương pháp giải - Xem chi tiết
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có vector pháp tuyến là IM với I là tâm đường tròn \(\left( C \right)\)
Lời giải chi tiết
+ \({x^2} + {y^2} + 6x - 4y - 12 = 0 \Rightarrow {\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} = 25 \Rightarrow I\left( { - 3;2} \right)\)
+ Phương trình tiếp tuyến \(\Delta \) của \(\left( C \right)\) tại điểm \(M\left( {0, - 2} \right)\) vector pháp tuyến là \(\overrightarrow {IM} = \left( {3; - 4} \right)\)
+ Phương trình đường thẳng \(\Delta :3\left( {x - 0} \right) - 4\left( {y + 2} \right) = 0 \Rightarrow \Delta :3x - 4y - 8 = 0\)
Unit 7: Tourism
Unit 7: New ways to learn
Bảo kính cảnh giới
Chương IV. Văn minh Đông Nam Á cổ-trung đại
Unit 7: Viet Nam and International Organisations
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10