Đề bài
Trong mặt phẳng \(Oxy\), cho hai điểm \(A\left( {1;2} \right)\) và \(B\left( {2;3} \right)\). Tìm một vector chỉ phương của đường thẳng AB và viết phương trình tham số của đường thẳng AB
Phương pháp giải - Xem chi tiết
Phương trình tham số của đường thẳng AB: đi qua \(A\left( {a,b} \right)\), nhận \(\overrightarrow {AB} = \left( {c,d} \right)\) là vector chỉ phương: \(\left\{ \begin{array}{l}x = a + ct\\y = b + dt\end{array} \right.\)
Lời giải chi tiết
+ Vector chỉ phương của đường thẳng AB là \(\overrightarrow {AB} = \left( {1;1} \right)\)
Phương trình tham số của đường thẳng AB: đi qua \(A\left( {1;2} \right)\), nhận \(\overrightarrow {AB} = \left( {1;1} \right)\) là vector chỉ phương: \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\end{array} \right.\)
Chiếc lá đầu tiên
Kiến thức chung
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Giáo dục kinh tế và pháp luật lớp 10
Bài 8. Một số nội dung Điều lệnh Quản lí bộ đội và Điều lệnh Công an nhân dân
Chủ đề 6: Lập kế hoạch tài chính cá nhân
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10