Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
So sánh (không dùng bảng số hay máy tính bỏ túi).
\(\sqrt {2005} - \sqrt {2004} \) với \(\sqrt {2004} - \sqrt {2003}\)
Phương pháp giải - Xem chi tiết
Áp dụng: \(\dfrac{1}{{\sqrt A + \sqrt B }} \)\(= \dfrac{{\sqrt A - \sqrt B }}{{A - B}}\,\,\left( {A,B \ge 0;\,A \ne B} \right)\)
Lời giải chi tiết
Ta có: \( \displaystyle{1 \over {\sqrt {2005} + \sqrt {2004} }}\) \( \displaystyle = {{\sqrt {2005} - \sqrt {2004} } \over {(\sqrt {2005} + \sqrt {2004} )(\sqrt {2005} - \sqrt {2004} )}}\)
\( \displaystyle = {{\sqrt {2005} - \sqrt {2004} } \over {2005 - 2004}}\)\( = \sqrt {2005} - \sqrt {2004} \,(1)\)
Ta có:
\( \displaystyle{1 \over {\sqrt {2004} + \sqrt {2003} }}\) \( \displaystyle= {{\sqrt {2004} - \sqrt {2003} } \over {(\sqrt {2004} + \sqrt {2003} )(\sqrt {2004} - \sqrt {2003} )}}\)
\( \displaystyle = {{\sqrt {2004} - \sqrt {2003} } \over {2004 - 2003}}\)\( = \sqrt {2004} - \sqrt {2003} \,(2)\)
Vì \( \displaystyle\sqrt {2005} + \sqrt {2004} >\)\( \displaystyle\sqrt {2004} + \sqrt {2003} \) nên:
\( \displaystyle{1 \over {\sqrt {2005} + \sqrt {2004} }} < {1 \over {\sqrt {2004} + \sqrt {2003} }}\) (3)
Từ (1), (2), (3) suy ra:
\( \displaystyle\sqrt {2005} - \sqrt {2004} \) < \( \displaystyle\sqrt {2004} - \sqrt {2003}\)
Đề thi vào 10 môn Toán Quảng Ninh
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 2
Đề thi vào 10 môn Văn Kiên Giang
Đề thi học kì 1 - Sinh 9
CHƯƠNG IV. BẢO VỆ MÔI TRƯỜNG