Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cho hai đường tròn đồng tâm \(O.\) Một đường tròn \((O’)\) cắt một đường tròn tâm \(O\) tại \(A, B\) và cắt đường tròn tâm \(O\) còn lại tại \(C, D.\) Chứng minh rằng \(AB // CD.\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức:
+) Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng với nhau qua đường nối tâm, tức là đường nối tâm là trung trực của dây chung.
Lời giải chi tiết
Vì đường tròn \((O’)\) cắt đường tròn \(( O; OA)\) tại \(A\) và \(B\) nên \(OO’\) là đường trung trực của \(AB\)
Suy ra: \(OO’ ⊥ AB\;\; (1)\)
Vì đường tròn \((O’) \) cắt đường tròn \((O; OC)\) tại \(C\) và \(D\) nên \(OO’\) là đường trung trực của \(CD\)
Suy ra: \(OO’ ⊥ CD \;\; (2)\)
Từ \((1)\) và \((2)\) suy ra: \(AB // CD.\)
Đề thi vào 10 môn Toán Bến Tre
Bài 2
CHƯƠNG IV. SỰ BẢO TOÀN VÀ CHUYỂN HÓA NĂNG LƯỢNG
Đề thi vào 10 môn Toán Khánh Hòa
Đề kiểm tra 15 phút - Học kì 1 - Sinh 9