Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Rút gọn:
\( \displaystyle{1 \over {\sqrt 1 - \sqrt 2 }} - {1 \over {\sqrt 2 - \sqrt 3 }} + {1 \over {\sqrt 3 - \sqrt 4 }}\) \( \displaystyle - {1 \over {\sqrt 4 - \sqrt 5 }} + {1 \over {\sqrt 5 - \sqrt 6 }} -{1 \over {\sqrt 6 - \sqrt 7 }}\) \( \displaystyle + {1 \over {\sqrt 7 - \sqrt 8 }} - {1 \over {\sqrt 8 - \sqrt 9 }}\)
Phương pháp giải - Xem chi tiết
Áp dụng:\(\dfrac{1}{{\sqrt A - \sqrt B }} \)\(= \dfrac{{\sqrt A + \sqrt B }}{{A - B}}\,\,\left( {A,B \ge 0;\,A \ne B} \right)\)
Lời giải chi tiết
Ta có:
\( \displaystyle{1 \over {\sqrt 1 - \sqrt 2 }} - {1 \over {\sqrt 2 - \sqrt 3 }} + {1 \over {\sqrt 3 - \sqrt 4 }}\) \( \displaystyle- {1 \over {\sqrt 4 - \sqrt 5 }} + {1 \over {\sqrt 5 - \sqrt 6 }} - {1 \over {\sqrt 6 - \sqrt 7 }}\) \( \displaystyle+ {1 \over {\sqrt 7 - \sqrt 8 }} - {1 \over {\sqrt 8 - \sqrt 9 }}\)
\( \displaystyle = {{\sqrt 1 + \sqrt 2 } \over {{{(\sqrt 1 )}^2} - {{(\sqrt 2 )}^2}}} - {{\sqrt 2 + \sqrt 3 } \over {{{(\sqrt 2 )}^2} - {{(\sqrt 3 )}^2}}}\) \( \displaystyle + {{\sqrt 3 + \sqrt 4 } \over {{{(\sqrt 3 )}^2} - {{(\sqrt 4 )}^2}}} - {{\sqrt 4 + \sqrt 5 } \over {{{(\sqrt 4 )}^2} - {{(\sqrt 5 )}^2}}} + \)
\( \displaystyle+ {{\sqrt 5 + \sqrt 6 } \over {{{(\sqrt 5 )}^2} - {{(\sqrt 6 )}^2}}} - {{\sqrt 6 + \sqrt 7 } \over {{{(\sqrt 6 )}^2} - {{(\sqrt 7 )}^2}}}\) \( \displaystyle + {{\sqrt 7 + \sqrt 8 } \over {{{(\sqrt 7 )}^2} - {{(\sqrt 8 )}^2}}} - {{\sqrt 8 + \sqrt 9 } \over {{{(\sqrt 8 )}^2} - {{(\sqrt 9 )}^2}}}\)
\( \displaystyle = {{\sqrt 1 + \sqrt 2 } \over {1 - 2}} - {{\sqrt 2 + \sqrt 3 } \over {2 - 3}} \displaystyle+ {{\sqrt 3 + \sqrt 4 } \over {3 - 4}}\) \( \displaystyle- {{\sqrt 4 + \sqrt 5 } \over {4 - 5}} \displaystyle + {{\sqrt 5 + \sqrt 6 } \over {5 - 6}} - {{\sqrt 6 + \sqrt 7 } \over {6 - 7}}\) \( \displaystyle + {{\sqrt 7 + \sqrt 8 } \over {7 - 8}} - {{\sqrt 8 + \sqrt 9 } \over {8 - 9}}\)
\( \displaystyle= {{\sqrt 1 + \sqrt 2 } \over { - 1}} - {{\sqrt 2 + \sqrt 3 } \over { - 1}} \displaystyle+ {{\sqrt 3 + \sqrt 4 } \over { - 1}}\) \( \displaystyle - {{\sqrt 4 + \sqrt 5 } \over { - 1}} + {{\sqrt 5 + \sqrt 6 } \over { - 1}} - {{\sqrt 6 + \sqrt 7 } \over { - 1}}\) \( \displaystyle+ {{\sqrt 7 + \sqrt 8 } \over { - 1}} - {{\sqrt 8 + \sqrt 9 } \over { - 1}}\)
\( \displaystyle = {{\sqrt 1 - \sqrt 9 } \over { - 1}}\)
\( \displaystyle = \sqrt 9 - \sqrt 1 = 3 - 1 = 2\)
Bài 3. Phân bố dân cư và các loại hình quần cư
PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2
HỌC KÌ 2
Đề kiểm tra 15p kì 1 – Có đáp án và lời giải
CHƯƠNG 5. DẪN XUẤT CỦA HIĐROCACBON. POLIME